
x86: Device Virtualization
Gabriel Laskar <gabriel@lse.epita.fr>

1



Hardware

Linux kernel

VM

Kernel

Userland

QEMU

VM

Kernel

Userland

QEMU

VM

Kernel

Userland

QEMU

KVM

HW Virtualization : QEMU/KVM

Hardware Virtualization

2



I/O Virtualization

● HW emulation
● Paravirtualized Devices

○ Xen
○ Virtio
○ Other (vmxnet, synthetic devices, …)

● Hardware Pass through
○ Full Device (pci, vga)
○ Protocol (usb, serial)
○ Other way

3



Devices

● Registers accessible to CPU :
○ MMIO
○ PIO (in, out)

● Access to Memory (DMA)
● Interrupts (irq, msi)

4



Example of a simple device: a block device

Request 
Buffer

0x00

0x04

Address

Status

Command

0x08

Buffer Address 
Register

Status Register

Command Register

Status Error

Cmd Block Address

I B ESR R
W

I : Initialize device
R : Ready to receive command
B : Busy
RW : Read/Write (clear if read, set if 
write)
S : Start Command
E : Error

Status 
Register

0 7

0 31

5



Hardware KVM Qemu Host kernelGuest kernel

Start Request

KVM Validates 
the access pass it to 

Qemu

Handle 
Request

Setup CPU into 
interrupt 

mode

ioctl
(KVM_RUN) 

return

call
ioctl

(KVM_RUN)

KVM switch to 
VM

HW switch to 
VM

Use Linux APIs

VM Exit

6



MMIO, PIO : How fast ?

● For each mmio access, there is an exit
● We have to assert the read/write, and process the 

command
● Can’t be asynchronous, ie : we can’t do that with the 

vcpu guest running
● What solutions do we have ?

7



Handle 
Request

Use Linux APIs
HW switch to 

VM

Hardware KVM
Qemu

IO Thread
Host kernelGuest kernel

Start Request

KVM Validates the 
access fire an event 

with fd_inKVM switch to 
VM

fire an event 
with fd_out

IO Event 
FD

IRQ FD
Send IRQ to VM

Do Something 
else and wait 

for the IRQ

HW Send IRQ to 
VM

VM Exit

8



How can we solve the IO Problem ?

● KVM_IOEVENTFD
○ Attach an ioeventfd to a pio/mmio guest address
○ When guest write into this address, it fire an event instead of an exit

● KVM_IRQFD
○ Allow setting an eventfd that will trigger a guest interrupt

● With eventfd and irqfd, we can offload io traffic into 
another thread, and just listen/fire event through fds.

9



Example : handling device

void handle_device(void *device, int eventfd, int irqfd)
{

struct pollfd input_queue = {
.fd = eventfd,
.events = POLLIN;

};

for (;;) {
int ret = poll(input_queue, 1, timeout);

if (ret > 0) {
uint64_t event_value;
read(eventfd, &event_value, sizeof(event_value));
uint64_t res = do_something(device, event_value);
write(irqfd, &res, sizeof(res));

}
}

}

10



Virtio

● Abstraction layer for virtualized devices
○ multiple device types: PCI, MMIO
○ Split in 2 parts: Configuration Space, Queues

● Multiple Devices supported:
○ block
○ network
○ channels (for serial line, 9p, or custom data channel)
○ scsi devices
○ RNG
○ Ballooning
○ GPU and Input devices (not completely merged yet)

11



Direct Pass-Through: VFIO, VT-D and 
IOMMU

● In order to pass-through a device, we must have some 
kind of IOMMU support

● VFIO is the linux API allowing to use it
● VFIO allows to use PCI (or other) devices in userland

12



Notes for the project

● Create a VM that can boot stos without stos.grub
○ Boot directly into PM mode
○ Load the kernel/stos:

■ kernel/stos
■ initramfs
■ commandline
■ modules
■ memory map

○ pass the boot param structure
○ Devices:

■ 8250
■ 8259a
■ 8254

● All your code should be working in your VM
13


