
x86 : Initialization &
Devices

Gabriel Laskar <gabriel@lse.epita.fr>

CPU

Northbridge

Southbridge

PCIE Graphique

RAM Chan A

RAM Chan B

BIOS (flash)

SATA

USB PCI Bus

Clock

PM

Front Side Bus

DMI Interface

2

x86 power on

● Chips self initialize
● Cpu initialization
● Firmware starting
● Boot code launch OS

3

PC Initialization - 1

● Execute the CPU reset vector (4Gb - 16b) :
0xfffffff0.

● This address is in the BIOS/UEFI flash
memory.

● CPU initialization
○ platform firmware switch to the firmware mode

(real, voodooo or flat protected)
4

PC Initialization - 2
● Preparation for memory initialization

○ CPU microcode update
○ CPU specific initialization

■ need to setup some kind of stack, before RAM

initialization, for that cache-as-RAM is used
(CAR)

■ some CPUs need to initialize some specific MSRs
○ Chipset initialization : BAR is initialized, watchdog is

disabled
● RAM Initialization 5

PC Initialization - 3

● Relocate firmware code in RAM
○ Memory Test
○ BIOS Shadowing
○ Redirect memory transactions
○ Set up the stack
○ transfer firmware to ram

● Misc platform enabling (clock, gpio)

6

PC Initialization - 4

● IRQ enabling and IRQ chips initialization
● Timer initialization
● Memory cache control initialization
● APs initialization (MTRRs must be consistent

across all cores)
● Simple IO Device initialization (ps/2, serial)
● PCI Device discovery and initialization
● OS boot loader execution

7

DOS Area

Legacy Video Area
(SMM Memory)

128KB

Expansion Area
128KB (16KB * 8)

Extended System BIOS
64KB (16KB * 4)

768KB

640KB

896KB

960KB

1MB

0x00000000

0x000A0000

0x000C0000

0x000E0000

0x000F0000

0x00100000
System BIOS

64KB

8

BIOS

● 16-bit code
● old, ancient way
● boot MBR partitions (0x55aa)
● user-api is interrupts

9

BIOS Interrupts

● int $0x10 : Video Services
● int $0x11 : Equipment list
● int $0x12 : lowmem size
● int $0x13 : Disk Services
● int $0x14 : Serial port Services
● int $0x15 : Misc services (0xe820, ...)
● ...

10

UEFI

● 32 or 64 bit code
● New “modern” way
● New partition format
● Interface based api

11

Example

#include <efi.h>

EFI_STATUS main(EFI_HANDLE ImageHandle,
 EFI_SYSTEM_TABLE *SystemTable)
{
 SystemTable->ConOut->Outputstring(
 SystemTable->ConOut, L”Hello World\r\n”);
 return EFI_SUCCESS;
}

12

Different types of Applications

● Applications
● Boot services
● Runtime services
● Drivers

13

Devices

● Registers accessible to CPU :
○ MMIO
○ PIO (in, out)

● Access to Memory (DMA)
● Interrupts (irq, msi)

14

What devices are available ?

● We need some way to discover devices
● When devices are on a bus there is (usually)

a way to have their description

15

PCI Bus

● Configuration space accessed through IO
Ports

● CONFIG_ADDRESS (0xcf8)
● CONFIG_DATA (0xcfc)

16

PCI Address Structure

17

PCI Header

18

Serial Port

● 8250 compatible (or 16550)
● base port on 0x3f8 (for COM1)
● IRQ 4
● ports mapped onto 8250 registers

19

