
x86a
Gabriel Laskar <gabriel@lse.epita.fr>

http://lse.epita.fr/teaching/epita/x86a.html

http://lse.epita.fr/teaching/epita/x86a.html
http://lse.epita.fr/teaching/epita/x86a.html

Outline

● x86 assembly
● 64bit support
● pagination
● multi-core

2

x86_64 : what’s new ?

● more registers
● 64bit addresses, 64bit registers
● no more segmentation (but gdt still present)
● new features in pagination
● no Task Switch but TSS still present
● lots of thing removed, but still present (for

special cases)
3

Multiple kind of x86 registers

● General purpose registers
● Segment registers
● FLAGS
● Control & Memory registers

4

General purpose registers

● %rax, %rbx, %rcx, %rdx
● %rsi, %rdi
● %rsp, %rbp
● %rip
● %r8 → %r15

5

Register Aliases

ah al
ax

eax

rax

07163163

6

Instruction pointer : %rip

● in x86_64, instructions can now reference
data relative to %rip

.global main
main:

lea string(%rip), %rdi
call puts
ret

.section .rodata
string:

.ascii "hello world!"

7

String manipulation

● rep prefix allow to repeat an instruction
● string instructions : movs, scas, stos

.global strlen
strlen:

xor %rcx, %rcx
not %rcx
xor %al, %al
cld
repne scasb
not %rcx
dec %rcx
mov %rcx, %rax
ret

8

Flags register

9

Rings

● 4 rings in x86_32, only 2 rings in x86_64
● SMM mode
● other modes (virtualization)

10

GDT entries

11

GDT entries in x86_64

12

Segment selectors

● Tied to GDT entries
● 2 parts, public part and shadowed part
● provide basic permissions on zones
● each segment selector describe memory

access for some instructions

13

Descriptions of segment selectors

● cs : access to code (%rip, call, ret ...)
● ss : access to stack data (%rsp, push, pop)
● ds : access to memory and %rdi
● es : access to %rsi
● fs : user-defined
● gs : user-defined

14

Thread local storage

● %fs, %gs can be used to implement TLS
variables.

● One page mapped, and referenced by
segment selector

15

Control registers

● cr0 : system control flags
● cr2 : page fault linear address
● cr3 : address space address
● cr4 : architecture extensions
● cr8 : Task Priority Register

16

Control Registers

17

Debug registers

● support for debugging
● exceptions
● eflags register
● debug registers (%dr0-%dr3, %dr6, %dr7)

18

Machine Specific registers

● Used to configure the internal state of the
cpu

● accessed through 2 instructions:
○ rdmsr
○ wrmsr

● address specified in %ecx, and value in %
edx:%eax

19

What can I do with MSRs?

● sysenter
● microcode updates
● mtrrs configuration
● smm configuration
● performance events & counters
● debug control
● misc features

20

Calling Conventions

● Lots of different ways to call a function
● here we focus on linux

http://stackoverflow.com/questions/2535989/what-are-the-calling-conventions-for-unix-linux-
system-calls-on-x86-64

21

http://stackoverflow.com/questions/2535989/what-are-the-calling-conventions-for-unix-linux-system-calls-on-x86-64
http://stackoverflow.com/questions/2535989/what-are-the-calling-conventions-for-unix-linux-system-calls-on-x86-64
http://stackoverflow.com/questions/2535989/what-are-the-calling-conventions-for-unix-linux-system-calls-on-x86-64

x86_32 : calling functions

● on x86_32 :
○ arguments on the stack, in reverse order
○ return value in %eax
○ %eax, %ecx, %edx saved by caller
○ stack must be 16-byte aligned

22

x86_32 : syscalls

● %ecx, %edx, %edi and %ebp
● instruction int $0x80
● The number of the syscall has to be passed

in register %eax
● %eax contains the result of the system-call

23

x86_64 : calling functions

● If the class is MEMORY, pass the argument
on the stack.

● If the class is INTEGER, the next available
register of the sequence %rdi, %rsi, %rdx, %
rcx, %r8 and %r9 is used

24

x86_64 : syscalls

● %rdi, %rsi, %rdx, %r10, %r8 and %r9
● The kernel destroys registers %rcx and %

r11.
● instruction syscall
● The number of the syscall has to be passed

in register %rax
● %rax contains the result of the system-call

25

Pagination

● multiple modes (32bit, 32bit pae, 64bit)
● table format
● TLB
● mirroring
● permissions
● initialization
● COW, swaping, shared memory

26

Pagination

27

%cr3

Directory Table Offset

PDE (PS=0)

PTE

Physical Address

Page Directory

Page Table

4-KByte Page

Linear Address

31 22 21 12 11
0

28

%cr3

Directory Offset

PDE (PS=1)

Physical Address
Page Directory

4-MByte Page

Linear Address
31 22 21
0

29

PDE and PTE

● R/W: Read/Write
● U/S: User/System
● PWT: Page Level write-through
● PCD: Page Level Cache disable

P
C
D

P
W
T

U
/
S

R
/
W

PG 1 D A
P
A
T

addr
[39:32]

addr
[21:22] 0 PDE 4MB Page

Address of 4KB Page Frame A
P
C
D

P
W
T

U
/
S

R
/
W

PG
P
A
T

D

Address of Page Table A
P
C
D

P
W
T

U
/
S

R
/
W

P0 PDE Page table

PTE 4KB Page

● A: Accessed
● D: Dirty
● G: Global (if %cr4.pge = 1)
● PAT: Reserved

30

PAE

31

64bit pagination

32

x86_64 : 2Mb Pages

33

x86_64 : 1Gb pages

34

x86_64 : structures

35

Page Fault Handling

● Which address? Content of %cr2
● Error Code:

○ P: non-present (clear), page-level protection violation (set)
○ W/R: read (clear) or write (set) error
○ U/S: supervisor (clear) or user-mode (set)
○ RSVD: reserved bit violation (set)
○ I/D: data (clear) or instruction (set)

R
S
V
D

U
/
S

W
/
R

P
I
/
D

36

TLB

● Cache for address translations
● 2 TLB : one for data, one for instructions

37

PAX

On x86_32, How can we enforce NX bit without
the hardware support ?

38

Multi Core

● bsp/ap initialization
● mptables, madt
● idt, ipi, lapic, ioapic
● impact on kernel code
● Kernel Lock
● cache coherency

39

x86_64 Initialization

● Disable paging
● Set the PAE enable bit in %cr4
● Load %cr3 with the physical address of the

PML4
● Enable long mode by setting the EFER.LME

flag in MSR 0xC0000080
● Enable paging

40

x86_64 : Are we done yet ?

● We are still in compatibility mode, with 32-
bit code
○ reload segment selector for %cs with

■ DB = 0
■ L = 1

● Now we can relocate all other tables (idt,
gdt, tss...)

41

Interrupt Routing

● If I have multiple core, to which core the
interrupt are delivered ?

● We need a new mechanism that enable
customisation for interrupt routing

42

LAPIC

● memory mapped (starting at 0xfee00000)
● Receive interrupts from multiple sources

○ Locally connected I/O devices (Local & External)
○ Inter-processor interrupts (IPIs)
○ APIC timer, PMC, Thermal, internal errors

43

IOAPIC

● 83093AA
● at least 24 programmable interrupts
● memory mapped
● more flexible on priorities
● usually connected to the LAPICs

44

IRQ Routing

45

Talking to another core : IPI

● In the LAPIC
● can send unicast or broadcast requests
● Used for :

○ flushing TLBs
○ flushing Caches
○ power up or down another core
○ arbitrary messages

46

Caching

● Caches are either shared (L2)
● or specific for a core (L1)
● Synchronisation must be done at the

hardware level

47

Discover Multiple cores

● How many cores do I have ?
● Where is located my APICs ?
● How the interrupt are configured ?

48

Multiprocessor Specification

● Old deprecated interface
● Easy to use
● But first we must find it !

49

● Find the MP Floating Pointer Structure
○ In the first kilobyte of the EBDA
○ In the first kilobyte of system base memory (639k

→ 640k, or 511k → 512k)
○ In the BIOS ROM address space 0xf0000 and

0xffffff
● Search for the Magic Value "_MP_"

Where are my MP tables

50

What’s in it ?

● Processor
● Bus (PCI, ISA, VESA, etc...)
● I/O APIC configurations
● I/O Interrupts assignment
● Local Interrupts assignment

51

ACPI

● provides an open standard for device
configuration and power management

● Replace
○ Advanced Power Management
○ MultiProcessor Specification
○ Plug and Play BIOS Specification

52

ACPI Tables

● Root System Description Pointer (RSDP)
● System Description Table Header
● Root System Description Table (RSDT)
● Fixed ACPI Description Table (FADT)
● Differentiated System Description Table (DSDT)
● Multiple APIC Description Table (MADT)
● Extended System Description Table (XSDT)
● ...

53

Root System Description Pointer

● Contains address of RSDT and XSDT
● Still in placed at random point in memory
● Magic "RSD PTR "

54

Root System Description Table

● Header with information about vendor
● Contain addresses to other tables
● XSDT is the same table but with 64-bit

addresses

55

Fixed ACPI Description Table

● Define ACPI information vital to an ACPI-
compatible OS

● Registers
● Pointer to DSDT
● Contains also various information (how to

enable or disable ACPI)

56

Differentiated System Description
Table

● Contains AML Code blocks
● AML is a generic bytecode
● Describe Hardware configuration
● Contains calls for Power Management states

57

Multiple APIC Description Table

● APIC structures
● Processor descriptions

58

Multi Core initialization

● Parse the MP tables to find the other APICs.
● initializes the bootstrap processor's local APIC.
● send Startup IPIs to each other cores with the address

of trampoline code.
● trampoline code initializes the AP's to protected mode
● The BSP can initialize the IO APIC into Symmetric IO

mode, to allow the AP's to begin to handle interrupts.
● The OS continues further initialization, using locking

primitives as necessary.
59

Changes in the OS

● kind of like multi-threaded application
● We need to care about locking
● And never stop the other cores

60

Per-cpu context

● Per-cpu context
○ Most of the control structures are per-cpu
○ Some can be shared, for example GDT

● Per-cpu variables
○ we can use %gs or %fs to implement per-cpu pages.

61

Changes in the OS

● Locking strategies
○ Giant Lock (Big Kernel Lock)
○ Fine grained lock

● Algorithms
○ Scheduling
○ Memory allocation
○ Handling of kernel resources

62

