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● need for space bigger that virtual memory
● data persistence
● data sharing

● large storage
● static
● decoupled from processes



Vocabulary

● Block
● Partition
● Filesystem
● Directory
● File



How a disk works?

● accessed by blocks
● command queue (read/write/flush)
● interrupt when ready or finished



Filesystems

● Structure
○ Files: logical unit for data storage
○ Directories: logical organisation for information
○ Partitions: high level organisation

● unified view of informations
● abstraction from physical layer
● format, types and semantics can be defined



File

● Name: unique identifier
● Format: hint about the internal structure of the file
● Type
● attributes: depends of the FS

○ dates
○ owner
○ ACLs
○ archive
○ hidden

Most of the time, metadatas are stored in directories



Types of files

● MS-DOS: only some files can be executed (com, exe, 
bat)

● Mac OS: information about application creator are 
stored, in order to relaunch it on opening

● Unix: no types (except for chardev, blockdev), every 
files are the same



Access Schemes

● Sequential access
○ positioning offset
○ lseek(2)

● Random access
○ preadv(2), pwritev(2)



Operations on files

● open(2)/creat
● read(2)/write(2)
● lseek(2)
● fstat(2)
● other

○ append modes
○ truncate
○ renaming
○ reading/writing attributes



Multiple level of organisation

● partition tables
○ mbr
○ gpt

● partitions
○ primary
○ extended

● volumes
○ lvm
○ bsd volumes

● filesystems
○ ext2/3/4, FAT, ntfs, ffs, ufs, ...



Partition Table

Magic = 0x55AA

Bootloader Code

Partition 1
Partition 2
Partition 3
Partition 4

Flag Start CHS address Type

Start LBA

End CHS address

Size

MBR Layout



type_guid partition_guid

first_lba last_lba attributes ...

partition name
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Block Layer Basics

● Works with IO requests
○ starting sector, length, read / write / special
○ Can have hints (SYNC) and other flags (FUA, FLUSH)

● Life of a request
○ Created in block layer when IO submitted by a filesystem
○ Can be delayed, merged (IO scheduler, multi queue handling)
○ Dispatched into a device driver
○ Completed when IO is finished



Submission Handling in Block Layer

Per-process plugging

IO Scheduler

Dispatch Queue

Device Driver

BIO Request



IO Schedulers

Decide when and in which order IO requests are 
submitted
● NOOP - just pass requests into dispatch queue
● Deadline

○ Prefer reads over writes
○ Sorts waiting requests to reduce seeking
○ Aims to dispatch each request at least after its deadline has expired

● CFQ
○ Prefers sync requests over async
○ Tries to achieve fairness among tasks
○ Support for IO priorities, cgroups, sync requests idling, ...



Virtual File System

● Abstraction for file access
● Concrete filesystems are specialisation of this fs
● Concrete filesystems are aggregated into a unique tree



mount(2)

#include <sys/mount.h>

int mount(const char *source, const char *target,
  const char *filesystemtype, unsigned long mountflags,
  const void *data);

mount("/dev/sdb12", "/mnt/example", "ext4", 0, NULL);



Superblock

● base of the file system structure
● located inside the partition
● contains the informations about the configuration of 

the filesystem



ext2 inodes



Let’s discover

● inodes
● dentry
● fdtable
● ext2 / ramfs
● basic syscalls 

○ read
○ write
○ lseek
○ open
○ close



Modern Filesystems

● how to:
○ create a snapshot
○ maintain versions
○ rollback...

● btrfs and zfs



Devices and IO

● what is a char device?
● what is a block device?
● mknod
● implementation (rtc-omap, evdev)
● subsystems in linux


