
Operating Systems :
FileSystems

Gabriel Laskar <gabriel@lse.epita.fr>

● need for space bigger that virtual memory
● data persistence
● data sharing

● large storage
● static
● decoupled from processes

Vocabulary

● Block
● Partition
● Filesystem
● Directory
● File

How a disk works?

● accessed by blocks
● command queue (read/write/flush)
● interrupt when ready or finished

Filesystems

● Structure
○ Files: logical unit for data storage
○ Directories: logical organisation for information
○ Partitions: high level organisation

● unified view of informations
● abstraction from physical layer
● format, types and semantics can be defined

File

● Name: unique identifier
● Format: hint about the internal structure of the file
● Type
● attributes: depends of the FS

○ dates
○ owner
○ ACLs
○ archive
○ hidden

Most of the time, metadatas are stored in directories

Types of files

● MS-DOS: only some files can be executed (com, exe,
bat)

● Mac OS: information about application creator are
stored, in order to relaunch it on opening

● Unix: no types (except for chardev, blockdev), every
files are the same

Access Schemes

● Sequential access
○ positioning offset
○ lseek(2)

● Random access
○ preadv(2), pwritev(2)

Operations on files

● open(2)/creat
● read(2)/write(2)
● lseek(2)
● fstat(2)
● other

○ append modes
○ truncate
○ renaming
○ reading/writing attributes

Multiple level of organisation

● partition tables
○ mbr
○ gpt

● partitions
○ primary
○ extended

● volumes
○ lvm
○ bsd volumes

● filesystems
○ ext2/3/4, FAT, ntfs, ffs, ufs, ...

Partition Table

Magic = 0x55AA

Bootloader Code

Partition 1
Partition 2
Partition 3
Partition 4

Flag Start CHS address Type

Start LBA

End CHS address

Size

MBR Layout

type_guid partition_guid

first_lba last_lba attributes ...

partition name

Page Cache VFS

Block Layer

Filesystems

Driver

Disk

Task Task Task
Userspace

Kernel

Hardware

Buffered IO
mmap

Buffered data Direct IO, metadata

Linux Kernel IO Architecture

Block Layer Basics

● Works with IO requests
○ starting sector, length, read / write / special
○ Can have hints (SYNC) and other flags (FUA, FLUSH)

● Life of a request
○ Created in block layer when IO submitted by a filesystem
○ Can be delayed, merged (IO scheduler, multi queue handling)
○ Dispatched into a device driver
○ Completed when IO is finished

Submission Handling in Block Layer

Per-process plugging

IO Scheduler

Dispatch Queue

Device Driver

BIO Request

IO Schedulers

Decide when and in which order IO requests are
submitted
● NOOP - just pass requests into dispatch queue
● Deadline

○ Prefer reads over writes
○ Sorts waiting requests to reduce seeking
○ Aims to dispatch each request at least after its deadline has expired

● CFQ
○ Prefers sync requests over async
○ Tries to achieve fairness among tasks
○ Support for IO priorities, cgroups, sync requests idling, ...

Virtual File System

● Abstraction for file access
● Concrete filesystems are specialisation of this fs
● Concrete filesystems are aggregated into a unique tree

mount(2)

#include <sys/mount.h>

int mount(const char *source, const char *target,
 const char *filesystemtype, unsigned long mountflags,
 const void *data);

mount("/dev/sdb12", "/mnt/example", "ext4", 0, NULL);

Superblock

● base of the file system structure
● located inside the partition
● contains the informations about the configuration of

the filesystem

ext2 inodes

Let’s discover

● inodes
● dentry
● fdtable
● ext2 / ramfs
● basic syscalls

○ read
○ write
○ lseek
○ open
○ close

Modern Filesystems

● how to:
○ create a snapshot
○ maintain versions
○ rollback...

● btrfs and zfs

Devices and IO

● what is a char device?
● what is a block device?
● mknod
● implementation (rtc-omap, evdev)
● subsystems in linux

