
Operating Systems :
Processes & Scheduling

Gabriel Laskar <gabriel@lse.epita.fr>

Outline

● vocabulary & generalities
● process scheduling
● process manipulation
● Inter process communication
● multithreading

2

What is a process ?

● program: static object that contain code
● processus: program in execution
● context: address space, registers, and other infos

3

The “OS API”

● Program respect a specific file format (ELF, MACH-O,
PE)

● The kernel expose syscalls (mostly)
● Libraries expose functions

4

Process Control Block

● struct task_struct in linux, PEB on Windows
● contains all the useful state for a task

○ state
○ stack
○ scheduling attributes
○ memory mapping
○ pid/gid/tgid
○ registers (in struct thread_info)

5

Task states

Running Ready

Blocked

Wait for event or IO Receive event or IO

Scheduler picks another task

Task is elected as running

6

Scheduling

● process table
● queue with ready processes
● queues with blocked processes

7

Different kind of schedulers

● long term: plan for tasks in the future
● short term: plan for next task based on dynamic

informations
● middle term: based on current load, plan for actions

(swapping for example)

8

Process Creation

● pid_t fork(void);
● long clone(unsigned long flags, void *child_stack,

 void *ptid, void *ctid,
 struct pt_regs *regs);

● int execve(const char *filename, char *const argv[],
 char *const envp[]);

9

#include <err.h>
#include <stddef.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

int main(int argc, char **argv, char **envp)
{

char *prog_argv[] = { "/bin/sh", "-c", "echo is it me you looking for", NULL };
int status;
pid_t pid = fork();

switch (pid) {
case -1:

err(1, "unable to fork");
case 0:

execve(prog_argv[0], prog_argv, envp);
err(1, "unable to execve %s", prog_argv[0]);

default:
waitpid(pid, &status, 0);

}
return 0;

}

10

Process hierarchy

● Unix/linux: process lives in a hierarchy
● multiple groups (signals, resource groups, ...)
● Windows: less obvious, but still some kind of tree

11

Process Manipulation

● int kill(pid_t pid, int sig);
● sighandler_t signal(int signum, sighandler_t handler);
● int sigaction(int signum, const struct sigaction *act,

 struct sigaction *oldact);

12

Memory Virtualization

● In the CPU
○ Memory Management Unit (MMU)
○ Page Table/Page Directory: contains memory mappings
○ Page Directory Base Pointer (PDBR): address to an address space

● In the OS
○ 1 PDBR per task => isolated address space

13

14%cr3

Directory Table Offset

PDE (PS=0)

PTE

Physical Address
Page Directory

Page Table

4-KByte Page

Linear Address

31 22 21 12 11
0

15

Communication between processes

● Cooperatives processes needs to communicate
○ shared memory
○ message passing

● Issues
○ how to establish a link
○ how many processes per link
○ how many link per processes

16

Explicit communication

● automatic link created by the system
● 2 processes per liaison
● uni or bidirectional link
● Modes

○ Symmetric link
○ Asymmetric link

● Issues
○ Need to identify the process by name
○ Issue when naming changes

17

Indirect Communication

● link established with processes sharing the same port
● multiple processes per link
● uni or bidirectional link
● Issues

○ Multiple reception of the same message

18

Bufferisation

● no bufferisation: no messages in flight, explicit
synchronisation is needed

● limited buffering: if the buffer is full, producer is
stalled

● infinite capacity: producer is never stalled
● Synchronisation

○ communication is asynchronous (no way to know if the message has
been received)

○ synchronisation can be done via acknowledgment
○ possible synchronisation with blocking calls waiting for an ack

19

Issues

● A process send messages to a terminated task
● Lost messages
● Corrupted messages

20

Multithreading

● Problems
○ Allow parallelism inside a process
○ reduce the cost of context switching

● Solution
○ Thread (lightweight process): state, registers & stack. share other

resources

○ Process: group of threads. Classical process = process with only 1
thread

● Functionalities
○ Same as a process: creation, termination, state, etc…
○ New issues: concurrent access on shared resources

21

Userland Threads

● Principle
○ implemented as a library in userland
○ 1 thread table per process

● Pros
○ usable on a system without support for threads
○ fast context switching (no kernel trap)
○ customisable scheduling algorithm

● Cons
○ Need for unblocking syscalls
○ Threads can lock the cpu (need to yield explicitly)
○ Threads are used to alleviate blocking

22

Kernel Threads

● Principle
○ add a thread table inside the process table
○ every blocking call is implemented as a syscall

● Pros
○ ease to create an application using them
○ no need for non blocking calls

● Cons
○ Creation/deletion/bookkeeping have a cost
○ interrupt & blocking syscalls

23

Pthread

● POSIX api used to run threads
● Simple unified interface for multi threaded

environment on POSIX system

24

What is per-thread ?

Per Thread
● Thread ID
● signal mask
● errno
● scheduling policy
● capabilities
● CPU affinity

25

Per Process
● process ID
● parent Process ID
● process group
● user/group id
● file descriptors
● umask
● current directory
● limits
● ...

What is scheduling ?

26

when to schedule ?

● blocked process
● terminated (or killed) process
● new process spawn
● blocked process becomes ready

27

Types of schedulers

● Cooperative: only blocked or terminated processes
● Preemptive: all types of events. Needs for hardware

support

28

Scheduling criterias

● different criteria to consider when trying to select the
"best" scheduling algorithm
○ CPU utilization
○ Throughput
○ Turnaround time
○ Waiting time
○ Response time

29

Types of tasks

● Interactive
○ response time: delay between submission and resolution of a

request
○ wait time: time passed in ready state

● Real Time
○ Respect of deadlines
○ Predictability

30

FCFS First come First served

● Pros:
○ No preemption
○ fifo for ready processes
○ easy to learn and understand

● Cons:
○ Great variance in scheduling criteria
○ Accumulation effect

● Bad for Shared Time System
● OK/Good for Batch Systems
● SCHED_FIFO

31

Round Robin

● Same thing as FIFO, with a base time quantum
● Same Pros & Cons
● A little bit better for shared time systems

32

Multiple Priority Queue

● Split tasks into multiple priorities
● Different Scheduling policy for each priority
● Scheduling between the different priorities

33

Lottery Scheduling

● Num of ticket by task == priority
● Get a random ticket number
● Schedule the process that own the ticket
● Implementation?

34

Completely Fair scheduling

● Try to give the same amount of power for each
processes

● Count with a fair clock the “waiting time”
● Higher priority = Time elapse faster
● Store processes by “waiting time” in a Red Black Tree
● Current Linux Scheduler

35

Real Time Scheduling

● Hard Real time need deadlines
● Soft Real time needs high priorities & small response

time
● Priority inversion

36

sched(7)

● sched_setscheduler(2)
● sched_getscheduler(2)
● sched_yield(2)
● SCHED_FIFO: First in-first out scheduling
● SCHED_RR: Round-robin scheduling
● SCHED_DEADLINE: Sporadic task model deadline

scheduling
● SCHED_OTHER: Default Linux time-sharing scheduling
● SCHED_BATCH: Scheduling batch processes
● SCHED_IDLE: Scheduling very low priority jobs

37

