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Introduction Problem definition

What are we trying to learn?
Computer Architecture

What is in the hardware?
I A bit of history of computers, current machines
I Concepts and conventions: processing, memory, communication,

optimization

How does a machine run code?
I Program execution model
I Memory mapping, OS support
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Introduction Problem definition

What are we trying to learn?
Assembly Language

How to “talk” with the machine directly?
I Mechanisms involved
I Assembly language structure and usage
I Low-level assembly language features
I C inline assembly
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Introduction Problem definition

Who do I talk to?

I System gurus
I Low-level enthusiasts

I Programmers
I Wise managers
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Introduction Outline

Course outline

I Processor architecture
I Memory
I Memory mapping
I Execution flow
I Object file formats
I Assembly programming
I Focus on x86
I Focus on RISC processors
I CPU-aware optimizations
I Multi-/Many-core, heterogeneous systems
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Processor architecture Overview

What a processor is...

A processor must be able to perform the following basic tasks:
I Execute instructions
I Read operands
I Store results

It needs several basic units to perform those tasks:
I A control unit
I An arithmetic and logical unit (ALU)
I A register bank

Let’s design it!
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Processor architecture Overview

Basic architecture
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Processor architecture Overview

Basic architecture (2)

In this model, the system state is entirely contained in the processor.
I This might be sufficient for a very basic processor
I More features could be leveraged by adding registers or program steps

Unfortunately,
I Internal memory is expensive and hard to design
I There is no communication
I Updating the program may not be easy

We need an access to memory, external devices, etc.
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Processor architecture Overview

Revised processor model

A processor must be able to perform the following basic tasks:
I Fetch instructions from an external entity and understand them (fetch

and decode)
I Execute instructions
I Store results to registers or external memory

It needs several basic units to perform those tasks:
I A control unit
I An arithmetic and logical unit (ALU)
I A register bank
I A program memory access
I A data memory access

Gabriel Laskar (EPITA) CAAL 2015 15 / 378



Processor architecture Overview

Revised processor model

A processor must be able to perform the following basic tasks:
I Fetch instructions from an external entity and understand them (fetch

and decode)
I Execute instructions
I Store results to registers or external memory

It needs several basic units to perform those tasks:
I A control unit
I An arithmetic and logical unit (ALU)
I A register bank
I A program memory access
I A data memory access

Gabriel Laskar (EPITA) CAAL 2015 15 / 378



Processor architecture Overview

Revised processor model (2)
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Processor architecture Overview

Processor physical layout

A processor is composed of many different units:
I Caches, MMU
I Integer unit, Control unit, Floating-point unit

Each unit is:
I implemented as an hardware component
I made of switchable parts (transistors)

In old processors:
I Units used to be independent chips
I Some were even optional “coprocessors”

Today, processors are embedded on a single chip.
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Processor architecture Inside the processor

Processor package
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Processor architecture Inside the processor

Processor physical layout
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Processor physical layout
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Processor architecture Inside the processor

Processor physical layout
Transistor details
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Processor architecture Processor units

Units

I Control unit fetches and
decodes the instruction

I Registers gives the data
I ALU implements the

operation
I Some instructions access

external data
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Processor architecture Processor units

Registers
May be seen as variables located inside the processor

I 8, 16, 32, 64, 128, ... -bits large
I General-purpose registers:

I integer (int)
I floating point (float, double)

I Specialized registers:
I flags

I Zero,
I Negative,
I Carry,
I Overflow,
I etc.

I system
I Mode,
I IRQ masking,
I etc.
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Processor architecture Processor units

ALU: Arithmetic and Logical Unit
An unit without registers!

I Logical operations
I AND, OR, XOR, NOT, NOR

I Arithmetic operations
I addition, subtraction, multiplication, division

I Shifts
I Compares

Division is not possible without registers!
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Processor architecture Instructions

Instruction types

There are different instruction types:
I Arithmetic and logical operations
I Control instructions
I Memory access instructions
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Processor architecture Instructions

Instructions classification

Flynn’s taxonomy:
I SISD: Single Instruction, Single Data

Classical Von Neumann architecture
I SIMD: Single Instruction, Multiple Data

Vectorial computers
I MIMD: Multiple Instruction, Multiple Data

Multiprocessor computers
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Processor architecture Instruction flow

Microprogrammed processor
Instruction flow

Processors may use a finite state machine or micro ops to process each
instruction step (Fetch, Decode, Execute, Memory access, Register write
back, etc.)

A basic processor needs several clock cycles to process all steps of the
current instruction before starting the next one.
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Processor architecture Instruction flow

Microprogrammed processor
Pro/cons

Cons:
I Slow
I The more complex the instructions are, the longer they take to get

processed
I Most of the hardware is used only once for each instruction
I Most of the hardware is unused most of the time

Pros:
I Easy to implement
I Small
I New instructions can be added just by adding new steps
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Processor architecture Pipeline processor

Pipelined processor
Instruction flow
A pipeline architecture enables the parallel execution of several
instructions:

I Split the execution of each instruction in several steps
I Each step performs an elementary operation
I Each step is associated to a specific part of the hardware
I All parts of the hardware work in parallel
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Processor architecture Pipeline processor

Pipeline
Flow

Pipeline timeline
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Processor architecture Pipeline processor
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Processor architecture Pipeline processor
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Processor architecture Pipeline processor

Speeding up the pipeline

Current processors extensively use the pipeline architecture to accelerate
the execution of instructions.

Because a pipeline architecture works in parallel, the slowest step delay
determines the pipeline global cycle delay (and working frequency).

8 ns18 ns10 ns

Step 1 Step 2 Step 3
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Processor architecture Pipeline processor

Speeding up the pipeline
Splitting operations in shorter steps enables the processor frequency to
increase.

8 ns18 ns10 ns

Step 1 Step 2 Step 3

Step 1

10 ns 9 ns

Step 2.1 Step 2.2 Step 3

8 ns9 ns
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Processor architecture CISC & RISC architectures

Instruction-set classification

Based on internal architecture and instructions formats, processor
architectures may be classified in two groups:

I Complex Instruction Set Computer (CISC)
I Reduced Instruction Set Computer (RISC)

Early processor architectures were mostly CISC-based: z80, Intel x86,
Motorola 68000, etc.

More recent designs are rather RISC-based: MIPS, Sparc, Alpha,
PowerPC, ARM, etc.
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Processor architecture CISC & RISC architectures

RISC
Characteristics

Pros:
I Simple instructions
I Fixed-length instructions
I Decoding instructions requires simple hardware

Cons:
I Programs are longer as they need more instructions
I Optimization is harder, compilers need to be smarter

Sometimes said as “Reject Important Stuff into Compiler”
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Processor architecture CISC & RISC architectures

RISC
Instruction example

sub %g1, %g2, %g3

0x200x86 0x40 0x02

00010000000000000010001000001110

%g3 sub %g1 %g2

source unused sourceformat destination opcode
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Processor architecture CISC & RISC architectures

CISC
Characteristics

Pros:
I Lots of instructions and opcodes
I A single instruction can perform complex operations
I Assembly programs are easier and shorter to write
I Code compression ratio is good

Cons:
I Binary instruction format has variable length
I It requires more complex hardware and high frequencies are harder to

achieve

Modern processors often internally translate the CISC code to RISC
microcode
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Processor architecture CISC & RISC architectures

CISC
Instruction example

opcode opc2 immediate memory
displacement

mod
r/m
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Memory Memories Memory types

Reasons to access memory

How does the memory work with the processor?
I Memory is used to fetch instructions,
I Memory is used to access data.
I There may be one unique memory, or two.

I If there is one memory, instruction / data accesses must be
sequencialized

I If there are two, code cannot be accessed as data
Conventional names:
1 Von Neuman architecture
2 Harvard architecture
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Memory Memories Access examples

Instruction fetch
The processor needs an instruction to process

Processor

Memory
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Memory Memories Access examples

Data access
load
Load the content of the memory cells pointed to by %g1 into %g2 register.

Processor

Memory

ld [%g1], %g2
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Memory Memories Access examples

Data access
store
Stores the content of %g2 register into the memory cells pointed to by %g1.

Processor

Memory

st %g2, [%g1]
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Memory Memory accessing modes Immediate addressing

Immediate addressing

I The value of data is directly stored in the instruction
I No memory access needed to get the value

In C language:
int a, b = ...;

a = b + 0x831;

In assembly language:
add %g1, 0x831, %g2
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Memory Memory accessing modes Immediate addressing

Immediate addressing
Sparc instruction details

0x200x84

000010001000001010

%g2 sub %g1

sourceformat destination opcode

sub %g1, 0x831, %g2

0x68 0x31

0x831

1 0 1000 0011 0001

immediate
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Memory Memory accessing modes Absolute addressing

Absolute addressing

I The address of the data is stored in the instruction
I A memory access is needed to get the value

In C language:
int a = *(int*)0x830;

In assembly language:
ld [0x830], %g1
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Memory Memory accessing modes Register indirect addressing

Register indirect addressing

I The address of the data is stored in a register
I A memory access is needed to get the value

In C language:
int a, *b = ...;

a = *b;

In assembly language:
ld [%g2], %g1
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Memory Memory accessing modes Complex addressing

Complex addressing

I Register indirect with base register
I Register indirect with offset
I And many others...

Assembly example:
ld [%g2 + 0x124], %g1
ld [%g2 + %g3], %g1
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Memory Alignment Memory access alignment

Definition

Data access alignment is solely about considered data type width.
I 32-bit integer access is aligned for addresses multiple of 4
I 16-bit integer access is aligned for even addresses
I 8-bit integer (char) accesses are always aligned!

Think about address % sizeof(type)

Gabriel Laskar (EPITA) CAAL 2015 64 / 378



Memory Alignment Memory access alignment

Access alignment

0x00

0x10

0x04

0x08

0x0c

Bus Width

Data read

0x6b0x5a

0xef0xcd 0x9f 0x8c

0xab0x89

0x56 0x780x340x01
Address
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Memory Alignment Structure alignment

Structure alignment

In a structure:
I Fields must be in declaration order
I Fields must all be aligned

Data alignment does not depend on architecture bus width

15 160 32

struct bit_packed_s

{

  int   a;

  short b;

  short c;
};

c

a

b
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Memory Alignment Structure alignment

Padding
Sometimes, consecutive fields in declaration cannot be consecutive and
aligned in memory

I Compilers put structure fields at aligned offsets
I Alignment may add unused padding bytes between fields

15 160 32

struct example_aligned_s

{

  int   b;

  short c;
};

  char  a;

a

b

c

padding bytes
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Memory Alignment packed structures

Basic packing

I Fields alignment can be ignored by compiler, on request
I Few architectures are able to access non aligned fields directly
I If non-native, unaligned access is emulated with multiple memory

accesses, shifts, ORs, etc.

struct example_packed_s

{

  int   b;

  short c;

  char  a;

}

__attribute__((packed));

15 160 32

a b

c
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Memory Alignment packed structures

Low-level packing
I Packing can even be done at bit level!
I Compiler will handle shifts and masks
I Can be mixed with union
I Powerful for matching existing protocols

struct bit_packed_s

{

  int  a:17;

  int  b:5;

  int  c:12;

  int  d:16;

  int  e:14;

}

__attribute__((packed));

a

d

cb

e

15 160 32

Beware of endianness
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Memory Endianness Different designs, different paradigms

Endianness

A data string represented with multiple bytes must be stored in memory.
Similarly to written language, these bytes may be written “left-to-right” or
“right-to-left”.

I Big-Endian
I Little-Endian
I Other endian modes
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Memory Endianness Explaination

Endianness
Mathematical reference

With a base b, a natural N may be decomposed in digits dk .
If we naturally write it:
N = dndn−1...dk ...d1d0
N = dn · bn + dn−1 · bn−1 + · · ·+ dk · bk + · · ·+ d1 · b1 + d0 · b0

N = 4810310 = bbe716
I With b = 10: N = 4 · 104 + 8 · 103 + 1 · 102 + 0 · 101 + 3 · 100
I With b = 16: N = 11 · 163 + 11 · 162 + 14 · 161 + 7 · 160

So logically we tend to count digits from LSB: right to left

Digit no 4 3 2 1 0
Base 10 value 4 8 1 0 3
Base 16 value b b e 7
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Memory Endianness Explaination

Memory representation

Usually, we like to represent memory in written order, the same way we
write words on a paper sheet: left to right

0 1 2 3
0x00 ’A’ ’ ’ ’s’ ’i’
0x04 ’m’ ’p’ ’l’ ’e’
0x08 ’ ’ ’m’ ’e’ ’s’
0x0c ’s’ ’a’ ’g’ ’e’
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Memory Endianness Explaination

Integer memory representation
The “endianness” problem is whether to write integers

I in text order: the natural way (for western languages)
I in index order: with digit 0 at address 0

3 2 1 0

0x00

0x10

0x04

0x08

0x0c

20 21 22 23

00 02 03

10 12

40

01

31 32

41 42

13

33

43

11

30
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Memory Endianness Explaination

Endianness
Do not mix everything!

I Data must be stored and fetched using the same convention.
I Don’t worry about byte order in registers, it does not make sense.
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Memory Endianness Demo

Endianness Demo

int main(void)
{

unsigned int a = 0x12345678;
hexdump(&a);

}
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Memory Caches

Cache memory: reason

I Once upon a time, CPU and memory speed were the same.
I Of course, they evolved:

I Moore’s law: CPU power doubles every 2 years,
I Memory speed: +7% every year.
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Memory Caches

Cache memory: definition

Cache memory is:
I a local copy of central memory,
I transparent, on-demand,
I volatile (may be flushed anytime),
I faster, closer to CPU than central memory,
I expensive!
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Memory Caches

Cache memory
Hierarchy

L1

Data

CPU

L1

Data

CPU

Die−Shared L3

Ins + Data + TLB

CPU−Shared L2

Ins + Data

Instr.

L1L1

Instr.

CPU−Shared L2

Ins + Data

I There are multiple caches “levels”
I with different size,
I with different speed,
I with different latency.

I Caches may be shared between code and data.
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Memory Caches

Cache memories side-effects

Caches may also involve stangeness:
I having copies of memory introduce a coherence problem,
I an access to a given memory location may vary,

There are various memory operators:
Programmer that you handle in C code,
Assembler that the compiler generated,

CPU that the CPU does,
In-cache that the cache does in the system.
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Memory mapping

Part IV

Memory mapping
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Memory mapping Address space Definition

Address space
Definition

An address space is a set of discrete values targetting a set of objects.
I Each address points to one object
I One given object may be pointed by more than one address

1

2

3

foo

bar

baz
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Memory mapping Address space Translation
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Memory mapping Address space Translation

Address space translation

Address space translation creates a new address space where each source
address is mapped to a destination address.
A given object can then be targetted by either addresses.

a

b

c

1

2

3

foo

bar

baz
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Memory mapping Computer address spaces Definition

Memory address space
Definition

A memory address space
I is contiguous
I can be mapped to another target address space (through address

space translation)
All memory accesses are done with respect to an address space.
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Memory mapping Computer address spaces Usual address spaces

Computer address spaces

CPU Address space available through a CPU register. Current machines
have 32 or 64 bit pointer registers

Physical Address space actually wired between hardware components. Current
machines have physical address spaces around 40 bits.

Virtual Address space reachable by a process. Generally 32 or 64 bits.
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Memory mapping Computer address spaces Usual address spaces

Physical memory

Physical memory provides the lowest accessible address space in computer.
Physical RAM is usually accessible as a small memory subset of the
physical address space.
Physical memory can be mapped in different ways depending on physical
address bus implementation:

I Accessible at a given location,
I Scattered at multiple locations,
I Accessible (many times) at multiple locations.
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Memory mapping Computer address space translation Segmentation

Memory segments

Memory segments define an address space as a sub-region of another
address space. It is mostly defined by the following attributes

I Segment base address in target address space,
I Segment size,
I Segment type and access rights.
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Memory mapping Computer address space translation Segmentation

Simple segment

Segmentation keeps memory locations contiguous.

0

0

Source address space

Destination address space
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Memory mapping Computer address space translation Segmentation

Physical address space

Physical address space

Physical memory

0

0
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Memory mapping Computer address space translation Segmentation

Single mapped RAM

addr[x<n] = mem[x]

Physical address space

Physical memory

0

0
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Memory mapping Computer address space translation Segmentation

Single mapped RAM

addr[x>=n] = ?

n

?

Physical address space

Physical memory

0

0
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Memory mapping Computer address space translation Segmentation

Multiple/loop mapped RAM

addr[x] = mem[x%n]

Physical address space

Physical memory

0

0
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Memory mapping Computer address space translation Segmentation

Memory access using segments

To access memory through a defined segment, the CPU performs the
following tasks:

I Check requested address against the segment size,
I Add the segment base address to the requested memory address,
I Check access rights.
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Memory mapping Computer address space translation Segmentation

Memory access using segments
Memory access

0

0

Segment base
address

Access
offset

Effective address

Target address
space

Process address
space
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Memory mapping Computer address space translation Segmentation

Segment descriptor table

0

0

address
space

Target

Segment 2

Segment 3

Segment 0

sizebase

CPU

Register

1

0

0

6

9

3

3

− −

0 12
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Memory mapping Computer address space translation Segmentation

Limitations of segmentation

Segmentation is a great thing, but is has a few limitations:
I Address-space must be mapped in contiguous blocks
I Thus segments are difficult to grow on-demand
I A whole segment must be present in the target address space
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Memory mapping Computer address space translation Pagination

Memory pages
Modern operating systems need more than segmentation.
Basic idea is to split the source address space in pages, and map each
source page to a target page.

address
space

Target

address
space

Source

0

0
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Memory mapping Computer address space translation Pagination

Pages mapping

Memory pages need to be mapped using a specific descriptor table
recognized by the CPU. Usual attributes for a page are

I address in target address space,
I type and access rights,
I page size,
I other attributes (cacheability, coherence, ...)
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Memory mapping Computer address space translation Pagination

Pages descriptor table

address
space

Target

address
space

Source

0

0

CPU

Register

−

5

3

6

10

−

−

−

4

1
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Memory mapping Computer address space translation Pagination

Pages mapping
Rationale

Splitting memory in pages allows more powerful memory management:
I Address spaces may be mapped to uncontiguous target pages,

allowing memory fragmentation.
I Many interesting operations can be performed on pages (sharing,

swapping, ...)
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Memory mapping MMU patterns Memory protection
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Memory mapping MMU patterns Memory protection

Memory protection
Motivations

Why do we need memory protection?
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Memory mapping MMU patterns Memory protection

Memory protection

In order to execute secure operating system, hardware has to provide
memory protection systems. This protects

I the system from the hosted processes
I hosted processes from each other

It may even protect the system from its own components in a
Micro-Kernel approach.
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Memory mapping MMU patterns Memory protection

Memory protection
How?

Several memory access checks are performed by the CPU, for each access,
transparently:

I address bounds validity,
I privilege level,
I operation type.
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Memory mapping MMU patterns Memory protection

Memory protection
Where?

I In a segmentation-based system, priviliges are per segment.
I In a pagination-based system, privileges are in page descriptor table,

with a page granularity.

x86 mixes both with segmentation on top of pagination.
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Memory mapping MMU patterns Privileges

Privilege levels
Privilege level keeps memory from being accessed by non-authorized code.
Different CPUs define different privilege levels.

Data
segment/page

level 0

Data
segment/page

level 1

Code
segment/page

level 1

Allowed

memory

access

memory

Illegal

access

Instruction

Target address
space
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Memory mapping MMU patterns Privileges

Operation type
Operation types checking keeps code from doing unwanted memory
operations.

segment/page
Data

(read)
segment/page

Data

(read/write)
segment/page

Code

(exec)

Target address
space

Instruction

ok

ReadWrite

okok

Read

writeread

Illegal

writeok

Execution Illegal Illegal
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Memory mapping MMU patterns Process switching

Process switching

Pagination systems are easier to use with a separate memory address space
for each process running on a computer:

I Switching process space implies changing the page descriptor table.
I Each process has its own page descriptor table ready to be used by

the CPU.
I Only the CPU register pointing to this table has to be changed to

setup a new address space.
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Memory mapping MMU patterns Process switching

Process switching

Process B
address space

Process A
address space

Target address
space

Process B
page table

Process A
page table

CPU register
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Memory mapping MMU patterns Memory sharing
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Memory mapping MMU patterns Memory sharing

Memory sharing

The memory pagination can be used to share pages between processes.
A single page can be mapped in several process address spaces to permit
different behaviors:

I Save physical memory by not duplicating shared code and read-only
data memory (used for shared libraries),

I Use shared memory for inter-process communication,
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Memory sharing

Process A
page table

Process A
address space

Process B
address space

Target address
space

Process B
page table

0 1 2 3 0 1 2

0 1 2 3 4 18........
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Memory mapping MMU patterns Copy On Write

Copy On Write

Copy On Write (COW) is a powerful trick used in many situations.

One of the most usual ones is fork() where the whole address space of a
process has to be cloned.

Basic idea is to make the whole memory read-only and actually copy only
when necessary, as late as possible.
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Step by step
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Memory mapping MMU patterns Page swapping

Page swapping

Page swapping is a mechanism artificially enlarging Physical memory with
a part of the hard-disk.
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Memory mapping MMU patterns mmap()

mmap()

Make part of the memory exactly match the contents of a file.
I Reflect changes immediatly between processes having file opened
I Permit different protections on different parts of the file
I Lazily load parts of file
I Lazily write parts back
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Execution flow Branch, function calls Branch principle

Branch principle

Branching is breaking the normal incremental execution flow to go execute
code somewhere else.
A branch has

I a destination,
I optionally a condition,
I optionally a “link” feature, saving return point.
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Execution flow Branch, function calls Branch principle

Branch offset

Instructions are fetched from memory to CPU by dereferencing the
program counter (%pc register)

I in normal execution flow, the %pc is auto-incremented

%pc

80450020

8045001C

80450018

80450014

80450010

Addresses Instructions

add %g1, %g2, %g3 

mov %g0, %g1

xor %g2, %g3, %g2

sub %g3, %g2, %g1

...

Next instruction

Executed instruction

I when a branch occurs, the %pc is affected in two possible ways:
relative branch: a constant offset is added to the %pc
absolute branch: an absolute address is loaded into the %pc
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Execution flow Branch, function calls Branch principle

Unconditional branch

The %pc register is always modified.
I Explicit jump: goto
I Explicit infinite loop, optimized by the compiler

%pc

80450120

8045011C

80450118

80450014

80450010

Addresses Instructions

b 8045011C 

mov %g0, %g1

xor %g2, %g3, %g2

sub %g3, %g2, %g1

...

Next instruction

Executed instruction
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Execution flow Branch, function calls Branch principle

Unconditional branch
C listing

#include <stdio.h>

void main(void)
{

do {
puts("hello");

} while (1);
}
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Execution flow Branch, function calls Branch principle

Unconditional branch
Control flow graph

return

main

puts("hello");
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Execution flow Branch, function calls Branch principle

Conditional branch

The %pc register is modified only if the condition is verified
I if statements
I loop (for, while) statements

80450010

Addresses

80450014

80450118

8045011C

bz 8045011C 

mov %g0, %g1

xor %g2, %g3, %g2

sub %g3, %g2, %g1

Instructions

Executed instruction

Potential next instruction

80450120 ...

%pc

Potential next instruction

80450018 ...
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Execution flow Branch, function calls Branch principle

Conditional branch
C listing

#include <stdio.h>

void main(void)
{

int i = 10;

do {
printf("%i\n", --i);

} while (i != 0);
}
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Execution flow Branch, function calls Branch principle

Conditional branch
Control flow graph

yes

no

main

i = 10

printf("%i\n");

i != 0

−−i

return
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Execution flow Branch, function calls Branch principle

Conditions

The decision to take the branch is based on register contents:
I conditional branch may occur if a specific bit is set in a register
I conditional branch may occur if a specific bit is clear in a register
I conditional branch may occur if a register equals a specific value

(usually zero)
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Execution flow Branch, function calls Branch principle

Complete examples

1. strlen
2. pgcd
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Execution flow Branch, function calls Pipeline considerations

Pipeline considerations

A branch may break the pipeline, slowing the execution
1. when things goes wrong, a bubble is created
2. sometimes, the processor succeeds in predicting the branch target
3. when a misprediction occurs, a bubble is created
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Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Bubble

When a branch occurs, the processor may flush the stages of the pipeline
that contains useless instructions:

Pipeline timeline

In
st

ru
ct

io
n

 s
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u
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ce

Fetch?
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Pipeline considerations
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Pipeline considerations
Bubble
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Pipeline considerations
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Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Delay slot

A delay slot is a processor feature. It’s a convention saying the instruction
following branches is always executed.
Branch is delayed.
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Pipeline considerations
Loads (digression)
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Pipeline considerations
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Pipeline considerations
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Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
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Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Loads (digression)
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Execution flow Function calls Principles

Function calls principle
A function is a piece of code that returns a value depending on the
parameters the user specifies as inputs, if any.

8004500

8004504

8004508

800450B

8002000

8002004

8002008

Addresses AddressesInstructions Instructions
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Execution flow Function calls Principles

“call” instruction

I Saves next instruction address (the return path),
I Jumps to function

80002000

80002004

80450018

80450014

80450010
80450018

%i7

Return address

%pc add %g1, %g2, %g3

...

xor %g2, %g1, %g3

mov %g0, %g1

call 80002000 

Addresses Instructions

Delay slot instruction

Executed instruction

Next instruction
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Execution flow Function calls Principles

“ret” instruction

I Stores the result in a dedicated register
I Restores the previously-saved PC address

Return address

%i7

80450018

%pc 80450018

80450014

80450010

80002100

800020FC

800020F8

Addresses Instructions

ret

not %g1, %g2

...

Executed instruction

Delay slot instruction

call 80002000 

mov %g0, %g1

xor %g2, %g1, %g3 Next instruction
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How to pass arguments and return values?

We need a space of shared data between the caller and the callee.
I From caller to callee, for arguments
I From callee to caller, for return values

Some arguments are purely for execution purposes:
I context pointers (stack, globals, ...)
I return address
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Simplest case

I Non-nested function call
I Less arguments than available machine registers
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Through registers

On most RISC architectures, there are registers dedicated to argument
storage:

I Each argument is stored and preserved directly in a register
I Local variables may be held in another set of registers

Example: on SPARC architecture, the CPU has:
I 8 registers (%g0, ... %g7) dedicated to global variables
I 8 registers (%i0, ... %i7) dedicated to input arguments
I 8 registers (%l0, ... %l7) dedicated to local variables
I 8 registers (%o0, ... %o7) dedicated to output arguments

A callee’s “input” registers are shared with caller’s “output” registers.
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Through global memory

Principle:
I Each argument is stored and preserved directly in memory
I Each local variable is held in memory
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Call conventions

I How to deal with huge amount of variables and arguments?
I How to deal with recursive calls and nested function calls?
I How to deal with variables bigger than registers?
I How to deal with “...” (like printf)?
I How to deal with dedicated registers (floats)?
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Problem

Consider a recursive function that needs local variables:
I Each time the function is called, a new context must be allocated to

preserve each local variable
I Each time the function returns, the previous context must be restored
I The function may call itself an unpredictable number of times
I These local variables cannot be reserved in a static memory space (as

global variables are).
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Abstract context stack

Local

context

Local

context

Local

context

calls

Function

returns

Function

void foo(int a)

{

    return foo(a + 1);

}
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Register window

Hardware context stack implementation:
I Uses a large amount of registers (example: 512 on Sparc)
I Uses a logical limitation to define multiple contexts
I Does context change by sliding a window on each function call
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Principle

%i0 − %i7

%l0 − %l7

%o0 − %o7

Sliding register window
Hardware registers

%R95

%R96

%R98

%R97

%R99

%R100

%R101

%R102

%R115

%R116

%R117

%R118

%R119

%R120

Previous

Current

Next

Abstract stack layout

Local

context

Local

context

Local

context

calls

Function

returns

Function

Gabriel Laskar (EPITA) CAAL 2015 173 / 378



Execution flow Function calls Call conventions

Sparc overlapping register window

register
window

Input registers

%i0 ... %i7

Local registers

%l0 ... %l7

Output registers

%o0 ... %o7

register
window

Calling fonctions context

Called fonctions context

Register
overlap

Function call

%l0 ... %l7

Local registers

Input registers

%i0 ... %i7

Output registers

%o0 ... %o7
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Function prologue and epilogue

prologue: slide register window
Example:

save %sp, -96, %sp

epilogue: slide back register window (i.e. restore previous context).
Example:

restore
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Memory stack

Register window has hard limitations:
I The call depth is limited to the total amount of registers
I The CPU needs a large amount of physical registers ⇒ expensive

On most systems, memory is used to implement a cheaper stack.
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Principle

Stack

memory

space

frame

stack

Current
variables

Local

arguments

Called function

Return address

arguments
Input

Frame

pointer

pointer

Stack

Sliding stack frame Process memory

Previous

Current

Next

Abstract stack layout

Local

context

Local

context

Local

context

calls

Function

returns

Function
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Nested function calls

Local variables

Stack memory space

Called function
arguments

Return address

Input
arguments

Return address

Local variables

Called function
arguments

Input
arguments

Return address

Local variables

Current
function
context

Stack
pointer

Frame
pointer

Function
calls

Gabriel Laskar (EPITA) CAAL 2015 178 / 378



Execution flow Function calls Call conventions

Function prologue and epilogue

prologue: saves previous frame pointer, set new frame pointer, reserve
space on memory stack for local variables
Example: a function that needs three 32 bits local variables
(12 bytes) on its stack:

[%sp] <- %fp
%fp <- %sp
%sp <- %sp - 12

epilogue: restores previous frame and stack pointers (i.e. restore
previous context).
Example:

%sp <- %fp
%fp <- [%fp]
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Argument and local variable access

argument:
Dereference the address “frame pointer + argument offset”:

ld [%fp + 16], %g1; Access to arg_a

local variable:
Dereference the address “frame pointer - local variable
offset”

ld [%fp - 4], %g1; Access to var_b
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Argument and local variable access
schema

previous fp

ret address

local
variables

function
arguments

Stack
pointer

Frame
pointer

void foo(int arg_a,

         int arg_b)

{

  int var_a, var_, var_c;

...

}

int var_c

int var_b

int var_a

previous fp

int arg_b

int arg_a

ret address
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Events

What are events?

How to handle them?
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Categorizing events

An interrupt is caused by an external event.
An exception is caused by instruction execution.

Unplanned Deliberate
Synchronous fault syscall trap,

software interrupt
Asynchronous hardware

interruption

→ An incoming event must be executed with a high priority.
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User space / kernel space
A trap is a critical event that must be handled by the kernel in a safe
memory space, the kernel space.

Kernel mode

Usr.stack

User data

User code

stack

Kernel

code

Kernel

Kernel

space
memory

Process
memory
space

User mode

Invalid

User code

User data

Usr.stack
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Trap handler table
The processor jumps to a trap routine defined by the operating system.
The trap routine address is stored in a dedicated descriptor table.

Interruption
table

address
register

Kernel mode

Usr.stack

User data

User code

code

Kernel

data

Kernel

trap #4

Interruption table
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System calls

The system call mechanism can be used by a process to request services
from the operating system:

I executing a process, exiting
I reading input, writing output (read, write...)
I performing restricted actions such as accessing hardware devices or

accessing the memory management unit.
I etc, ...
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Processor modes

Hardware facilities have been implemented to ensure process isolation in
multi-user/multi-processor environment.
Today, processors have two (or more) execution modes:
user mode

dedicated to user applications
supervisor mode

reserved for operating system kernel
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Execution permissions

For security sake, some operations are restricted to kernel space:
I peripheral input and output
I low-level memory management

System calls allow user to switch to kernel space and perform restricted
actions, under certain conditions.
The kernel must check system call parameters validity.
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System call implementation

1. System calls use a dedicated instruction which causes the processor to
change mode to superuser (or protected) mode.

2. Each system call is indexed by a single number: the syscall trap
handler makes an indirect call through the system call dispatch table
to the handler for the specific system call.
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Execution path
System calls run in kernel mode on the kernel memory space.

system
return

context
switch

context
switch

Kernel

code

User

codesystem
call

User

code

User mode Kernel mode
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libc example

Standart C library’s read, write, pipe, ... functions are wrappers to
corresponding system calls:

_SYSENTRY(pipe)
mov %o0, %o2
mov SYS_pipe, %g1
ta %xcc, ST_SYSCALL
bcc,a,pt %xcc, 1f
stw %o0, [%o2]
ERROR()
1: stw %o1, [%o2 + 4]
retl
clr %o0
_SYSEND(pipe)
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Faults

How to handle divide by zero?
How to handle overflow?

How to handle ...
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Similarities with system calls

Faults are similar to system calls in some respects:
I Faults occur as a result of a process executing an instruction
I The kernel exception handler may return to the faulty user context

But faults are different in other respects:
I Syscalls are deliberate, faults are unexpected
I Not every execution of the instruction results in a fault
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Handling a fault

Different actions may be taken by the operating system in response to
faults:

I kill the user process
I notify the process that a fault occurred (so it may recover in its own

way)
I solve the problem and resume the process transparently
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Execution path

Instruction
fault

context
save

process
exit

User

code

context
restore

User

code

Kernel

code

User mode Kernel mode
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Events interface

Unix systems can notify a user program of a fault with a signal.
Signals are also used for other forms of asynchronous event notifications.
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Hardware interruptions

How to handle devices interruptions?
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Execution path

context
load

context
save

User

code

Kernel

code

User

code

interruption
return

hardware
interruption

User mode Kernel mode
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Multitasking

A single process may not use system resources at full capacity.
The idea of multitasking is to simulate the execution of concurrent
execution of many processes, using a single processor.
The operating system has to:

I create and delete processes,
I organize processes in memory,
I schedule processes for CPU use.
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Memory mapping

Pysical memory 
space

B process addressing
space

A process addressing
space

A process
memory map

B process
memory map

Page table
address register
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Context switching

B

process

registers

A

process

registers

Real

CPU

registers

Memory

contexts

backup

Reg 1

Reg 2

FlagReg

PageReg
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Process life

Kernel

Process A Process B Process C

context savecontext load

Timer

interruption

This approach requires a way of handling events.
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The big picture

ld

C source
code

pure C
code

Assembly
code

Object
file

ascc1cpp

.o

.o

.o.s.i.c

.h

a.out

Header files
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Preprocessor

cpp as ld

C source

code

Pure C

code

Assembly

code file

Object

cc1

Executable

Header

files

.i .s .o.c

I Also called macro-processor
I Transforms a text (source) file into another text (source) file:

I merges many files into one (#include)
I replaces macros by their definitions (#define)
I removes code considering conditions (#if*)

Example: cpp
I Input: C source file with directives
I Output: “pure” C source file
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C compiler

cpp as ld

C source

code

Pure C

code

Assembly

code file

Object

cc1

Executable

Header

files

.i .s .o.c

I Scans and parses the source file
I Analyzes the source (type checking)
I Generates assembly code (another source file) for the target

architecture

Gabriel Laskar (EPITA) CAAL 2015 214 / 378



Object file formats Build process Overview

Assembler

cpp as ld

C source

code

Pure C

code

Assembly

code file

Object

cc1

Executable

Header

files

.i .s .o.c

I Translates instructions in binary opcode sequence for the target
architecture

I Collects symbols and resolve label addresses
I Writes an object file

The assembler source file will be different depending on architecture!
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Linker

cpp as ld

C source

code

Pure C

code

Assembly

code file

Object

cc1

Executable

Header

files

.i .s .o.c

I Merges (many) object files
I Resolves external symbols
I Computes addresses
I Writes an executable file
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Development tools

I SPARC assembler: use aasm
I Project at http://savannah.nongnu.org/projects/aasm

I Sparc, Mips, PPC, ARM, ... architecture emulators
I SoCLib: https://www.soclib.fr
I QEmu
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objdump

I Displays object (executable) file tables, on host architecture
I Disassembles object (executable) file code-sections
I Useful options:

I -h: display the section headers
I -t: display the symbol tables
I -dx: disassemble
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readelf

I Displays ELF object (executable) file tables, on any architecture
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Simple binary formats

Consider an object program that does not need other object programs to
build a binary program:

I the assembler collects code markers (labels)
I the assembler resolves all labels and replaces all of them in the code
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Flat program

The labels are immediately replaced and written by the assembler in the
binary file:

00001200

...

90 nop

00001201 ...

my_function:

00000001

OpcodesAddress

00000006

00000000 90 nop

B8 78 56 34 12 mov  eax, 0x12345678

E8 00 12 00 00 call my_function

Source code
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Flat binary format

In raw binary format, the whole program is written directly in file.
Useful at boot time: the processor can only read raw code and there is no
binary loader.
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Challenges

What happens when a function must be imported?

What happens when a function must be exported?
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Complex program

When the symbol of a called function is unresolved, the assembler leaves
the call destination address undefined:

00000006 E8 00 12 00 00

External

reference

call printf

00001200

...

90 nop

00001201 ...

my_function:

00000001

OpcodesAddress

00000006

00000000 90 nop

B8 78 56 34 12 mov  eax, 0x12345678

E8 00 12 00 00 call my_function

Source code

⇒ The binary format must hold information on created “holes”
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Needs

To fill the holes left by the assembler later on, the binary file must hold:
I A symbol table, which stores each label identifier,
I A relocation table, which shows all the remaining “holes”
I Labels associated to each “hole”.

More generaly, a binary file format must also hold:
I A header containing general informations needed to access various

parts of the file,
I Several sections holding code and data (raw data).
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Abstraction of a binary file format

string table

symbol table

section table

file header

.bss

reloc. table

.data

.rodata

.text

.data

.rodata

.text

(not in file)

object file sectionsobject file headers

(Information regarding sections, symbol table etc. are usually identified
within the file header)
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The symbol table

The symbol table associates each symbol identifier to the code (or data)
address it represents (when the address has been resolved):

symbol table

"printf"

"my_func"

"fopen"
my_func:

  ...

0106

0105

0100

0000

0005

E8 ?? ?? ?? ??

90

E8 ?? ?? ?? ??

E8 00 01 00 00

E8 ?? ?? ?? ??

call printf

nop

call fopen

call my_func

call printf
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The relocation table

The relocation table associates each “hole” address to a label identifier
address:

relocation table

printf

0006

0107

printf

0101

fopen

symbol table

"printf"

"my_func"

"fopen"
my_func:

  ...

0106

0105

0100

0000

0005

E8 ?? ?? ?? ??

90

E8 ?? ?? ?? ??

E8 00 01 00 00

E8 ?? ?? ?? ??

call printf

nop

call fopen

call my_func

call printf
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BSS regions

Instead of keeping a bunch of empty bytes in the binary file for big static
variables (arrays), the header can specify a whole region which must be
filled with zero.
BSS regions makes the file smaller and faster to load.
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Linking

The operation that combines a list of object programs into a binary
program is called linking. The tasks that must be accomplished by the
linker are:
1. Named sections from different object programs must be merged

together into one named section.
2. Merged sections must be put together into the sections of the

memory model.
3. Each use of a name in an object program’s references list must be

replaced by an address in the virtual address space.
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Merging object files

Combining each .text section together, each .data section together, etc.:

.data

.rodata

.text

.data

.rodata

.text

.data

.rodata

.text
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Zoom on .text section merging

Symbol = S Symbol = B + S

A object

section

B object

section

merged object

section

C

B

A

0x0 0x0 0x0

.text

.text

.text
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Symbol resolution

.text / .data

relocations symbols.data.textfile header

a.out format

raw binary format
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Executable binary files

When there is neither unresolved symbols nor relocations anymore, the file
is executable.
Executable files usually have a fixed constant load address on a given
system.
Unresolved/unused symbols may exist in an executable file if no relocation
uses it.
The strip command wipes out unused symbols from the symbol table.
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a.out: Assembler Output

relocations

raw binary format

a.out format

.text / .data

.text .data symbolsfile header

I Very simple
I .. but pretty fast to load
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COFF (Common Object File Format) and ELF (Executable
and Linking Format)

.data.text relocs

.data.textsymbolsrelocs

syms

file section
tableheader

file section
tableheader

ELF format

COFF format

I Permits use of dynamic libraries
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Mach-O (Darwin)

rodata datatext
load

commands

file

header
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Mach-O (Darwin)
“Fat binaries”

rodata datatext
load

commands

file

header

rodata datatext
load

commands

file

header

Fat arch table

Fat header

Mach−O fat binaries
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Binary file loading

Executable file format is like object file format, with the following
restrictions:

I It has no relocations,
I All addresses are resolved
I It is ready to load in memory

Gabriel Laskar (EPITA) CAAL 2015 248 / 378



Object file formats Executable code loading Binary file loading

Executable format
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file header
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Executable loading

Process memory structure is mapped to internal executable file format:
I Loadable sections are loaded from file to memory
I Uninitialised data (.bss section) is allocated in process memory
I Internal file sections are ignored
I Heap and stack are allocated
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Executable memory mapping

.data

.rodata

.text

memory
initialized

non
initialized
memory

stack

heap

.bss

memory sections

process memory

string table

symbol table

section table

file header

.bss

reloc. table

.data

.rodata

.text

.data

.rodata

.text

(not in file)

object file sectionsobject file headers
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Memory attributes

Memory attributes depends on section and area type:
I .text section may be loaded in executable only region (depending on

OS)
I memory used to store .rodata section will be marked as read-only
I memory used to store .data, .bss sections, heap and stack will be

marked as read/write
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Memory attributes

rw−

r−−

−−x

initialized
memory

non
initialized
memory

memory sections

from file

loaded

data

file data
internal

executable file

object file sections

executable

pages

read/write

virtual memory rights

process memory

.text

.rodata

.data

.text

.rodata

.data

.bss

heap

stack

not in file

sym. table

string table

pages

read only

pages
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Dynamic libraries

Use of dynamic libraries implies:
I different and more complex memory mapping
I position independent code
I different way to handle relocations
I plenty of cool complicated stuff
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Dynamic libs in memory

Libraries have specific memory mapping and organisation:
I A dynamic library is loaded only once even if several processes use it
I Extra .data and .text sections are mapped in process memory-space
I Library .text section is mapped in several process memory
I Library .data section is copied in each process memory
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Dynamic process memory layout

stack

heap heap

stack

copy

library A

.text

.data

.data

.rodata

.text .text

.rodata

.data

.data

.text

.text

.data

.data

.text

.text

.text

.data

.text

library B

executable A process A process B executable B

copy
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Handling code location change

Dynamic libraries may not be mapped with the same virtual address in all
processes:

I Address may already be in use by an other library
I The same code must be able to run with different base addresses

Position independent code solves these problems without going through
the complex relocation process.
Relative jumps and relative data memory accesses need to be handled by
the CPU.
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Position independent code

position
independent

code

relative
branch0112 mov ...

0100 jmp +12

heap

stack

process

.text

.data

.rodata

.data

.rodata

.text

executable

.text

library
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Position dependent code

Some location change are more complicated with dynamic libraries:
I .data can’t be referred with relative addressing from .text section if

no relative data access is available.
I .data section won’t have the same address in all process memory

maps.
I .text section is common to all processes and can’t reflect .data

location differences.
The solution is to use indirect memory access to reach data objects from
code. One GOT (Global Offset Table) and PLT (Procedure Linkage Table)
will hold data object addresses for each process.
Some dynamic relocations and data copy will also help to solve this
problem.
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Use of GOT/PLT

GOT/PLT
in process A

GOT/PLT

.text
call printf.data

heap

stack

process

.text

.data

.rodata

.data

.rodata

.text

executable

.text

library
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What is assembly?

Assembly is not
I binary data
I directly interpreted by the processor
I don’t mix it up with machine code

Assembly is
I a language, with a syntax, keywords, etc.
I translated in a binary format

Gabriel Laskar (EPITA) CAAL 2015 265 / 378



Assembly programming Introduction

Benefits of assembly programming

I Improve developper’s understanding of computer architecture and
programming

I Direct access to hardware resources
I Access to system features
I Speed and efficiency of programs
I Low footprint of programs
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Drawbacks of assembly programming

I Low-level programming forbids abstraction
I Assembly code is hard to keep clean
I Slows development down: lots of keywords, unusual behaviors
I Each processor architecture has its own language: conventions,

registers, instructions, privileges, allowed arguments
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Assembly file organization

Source file is organized in different sections:
code

Contains program binary opcodes
data

Contains program global variables
rodata

Contains read-only program variables
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Assembly language statements

directives
Determine the assembler behavior

instructions
Chosen in the CPU instruction set, translated in binary
format, written in output file

operands
Expressions containing register identifiers, immediate
operands, symbols

labels
Between instructions, used to mark specific locations in
source code
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Assembly language statements
Example

.mod_load asm-sparc

.define FOO 5

.section code .text
.mod_asm opcodes v8

add %g0, FOO, %g1
.ends
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Assembly language statements
Example

.mod_load asm-sparc

.mod_load out-elf32

.section code .text
.mod_asm opcodes v8

mov 0x12, %g1
mov 0x34533, %g2

add %g1, %g2, %g3
.ends

Gabriel Laskar (EPITA) CAAL 2015 274 / 378



Assembly programming Pure assembly files Examples

Assembly language statements
Example

.mod_load asm-sparc

.include sparc/v8.def

.section data .data
lbl:

.reserve 4
.ends

.section code .text
.mod_asm opcodes v8

@set .data:lbl, %g2
ld [%g2],%g1

.ends
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Assembly language statements
Example

.mod_load asm-sparc

.include sparc/v8.def

.section code .text
.mod_asm opcodes v8

.export main

.proc main
ret
restore

.endp
.ends

Gabriel Laskar (EPITA) CAAL 2015 276 / 378



Assembly programming Pure assembly files Examples

Assembly language statements
Example

.mod_load asm-sparc

.include sparc/v8.def

.section code .text
.mod_asm opcodes v8

.extern exit

.proc my_exit
call exit
nop

.endp
.ends
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Why?

I C can’t express everything
I Cpu-specific registers (flags, condition codes, hardware counters)
I Features not addressed by language (atomic operations)
I System features (Memory handling, interrupts handling, exception

handling)
I Compiler are not always aware of possible optimizations

I Use of instruction side-effects
I Un-optimizable patterns (or optimization patterns specific to only one

algorithm)
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Inline Assembly
Compiler’s PoV

For the compiler, the assembly you pass in is:
I a raw string
I with a printf-like syntax
I passed directly to the assembler
I surounded by optional statements

I input values
I output values
I clobbered values
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Inline Assembly
Programmer’s PoV

For you, the assembly you pass is meant to either
I compute a value
I change some hardware feature
I have a side-effect
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Example
No data

static inline
void disable_interrupts(void)
{

asm volatile("cli");
}
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Example
Output only

static inline
cpu_cycle_t cpu_cycle_count(void)
{

uint32_t low, high;

asm("rdtsc" : "=a" (low), "=d" (high));

return (low | ((uint64_t)high << 32));
}
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Example
Input only

static inline
void cpu_io_write_8(uintptr_t addr, uint8_t data)
{

asm volatile("outb %0, %1"
:
: "a" (data), "d" ((uint16_t)addr)
);

}
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Example
In-out

static inline
uint32_t cpu_endian_swap32(uint32_t x)
{
asm ("bswap %0"

: "=r" (x)
: "0" (x)
);

return x;
}
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Syntax

I one statement with optional arguments
asm [volatile]("statements \n\t"

"on many lines \n\t"
[: [output_variables]
[: [input_variables]
[: clobbered_registers]]]

);
I arguments are referenced in-order (%0..%n), whether they are input or

output!
I arguments types abide constraints, enclosed in ""
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Add with carry and overflow
C

uint32_t add_cv(uint32_t a, uint32_t b, uint8_t cin,
uint8_t *cout, uint8_t *vout)

{
uint64_t sum = (uint64_t)a + (uint64_t)b + (uint64_t)cin;
*cout = sum >> 32;
*vout = ( (b ^ ((uint32_t)sum)) & ~(a^b) ) >> 31;
return sum;

}
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Add with carry and overflow
ASM

uint32_t add_cv(uint32_t a, uint32_t b, uint8_t cin,
uint8_t *cout, uint8_t *vout)

{
uint32_t result;

asm(" btl $0, %k5 \n"
" adcl %k3, %k4 \n"
" setc %b1 \n"
" seto %b2 \n"
: "=r" (result), "=qm" (*cout), "=qm" (*vout)
: "r" (a), "0" (b), "r" (cin)

);

return result;
}
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Atomic increment for ARM
static inline
bool_t cpu_atomic_inc(volatile atomic_int_t *a)
{

reg_t tmp = 0, tmp2;

asm volatile("1: \n\t"
"ldrex %0, [%2] \n\t"
"add %0, %0, #1 \n\t"
"strex %1, %0, [%2] \n\t"
"tst %1, #1 \n\t"
"bne 1b \n\t"
: "=&r" (tmp), "=&r" (tmp2)
: "r" (a)
: "m" (*a)
);

return tmp != 0;
}
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Named values

I Using numbers for values makes code harder to write and read
I GCC permits named values in inline assembly
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Named values
With numbers

static inline
bool_t cpu_atomic_inc(volatile atomic_int_t *a)
{

reg_t tmp = 0, tmp2;

asm volatile("1: \n\t"
"ldrex %0, [%2] \n\t"
"add %0, %0, #1 \n\t"
"strex %1, %0, [%2] \n\t"
"tst %1, #1 \n\t"
"bne 1b \n\t"
: "=&r" (tmp), "=&r" (tmp2)
: "r" (a)
: "m" (*a)
);

return tmp != 0;
}

Gabriel Laskar (EPITA) CAAL 2015 296 / 378



Assembly programming Inline Assembly in C Named values

Named values
Named

static inline
bool_t cpu_atomic_inc(volatile atomic_int_t *a)
{

reg_t tmp = 0, tmp2;

asm volatile("1: \n\t"
"ldrex %[tmp], [%[atomic]] \n\t"
"add %[tmp], %[tmp], #1 \n\t"
"strex %[tmp2], %[tmp], [%[atomic]] \n\t"
"tst %[tmp2], #1 \n\t"
"bne 1b \n\t"
: [tmp] "=&r" (tmp), [tmp2] "=&r" (tmp2)
, [clobber] "=m" (*a)
: [atomic] "r" (a)
);

return tmp != 0;
}
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Quizz!
What does this do?

asm volatile("":::"memory");
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Early events and CPU development

1971 Intel 4004
1978 Intel 8086 & 8088, first x86 CPUs
1981 Intel 80186
1982 Intel 80286: 16 bits, 24 address bits, protection
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Successful CPU development

1985 Intel 80386: 32 bits, MMU
1989 Intel 80486: on-chip cache, pipeline
1993 Intel PentiumTM: superscalar, mmx, 64 address bits
1995 Intel Pentium Pro: ooo
1997 Intel Pentium II: internal L2
1999 Intel Pentium III: cpuid!
1999 AMD Athlon: ooo, 3dnow
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Technology barriers

2000 Intel Pentium 4: HT
2001 Intel Itanium
2003 AMD Athlon 64
2003 Intel Pentium M: P6 (PPro to PIII)
2006 Intel Pentium 4 Prescott 2M: 64 bits
2006 Intel Core/Core2: fusion
2009 Intel Core i5/i7: ...
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x86 architecture

The x86 architecture is:
I based on a CISC instruction set.
I based on little-endian memory access.
I based on two operands instructions including memory access.
I backwards compatible: all new x86 processors are fully compatible

with their predecessors.
I very complex: Pentium IV has a 20 stages pipeline.
I newer processors have less pipeline stages
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Available registers

First x86 generation had a few 16-bits registers available:
I General purpose 16 bits registers:

I ax, bx, cx, dx, si, di
I General purpose 8 bits registers:

I al, bl, cl, dl
I ah, bh, ch, dh

I Stack and frame registers:
I sp, bp

I Flag registers, ...
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Nested registers

registers
8 bits

register
16 bits

AH AL

AX
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Register extensions

I Starting with the 386 processor, all registers are now 32-bits wide.
I Due to compatibility issue, 16 bits register are still present.
I eax, ebx, ecx, edx, esi, edi, esp, ebp were added.
I Even if registers size is increased, registers count remained the same:

only 6 registers are available for operations.

I For amd64, AMD extended the register count to 16, only available
with 64 bits mode enabled

I rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp,
I r8, r9, r10, r11, r12, r13, r14, r15

I AMD licensed the amd64 to Intel after the Itanium flop...
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32/64 bits nested registers

RAX
64 bits
register

EAX 32 bits
register

registers
8 bits

register
16 bits

AH AL

AX
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Instruction format

x86 architecture is a CISC based architecture:
I All instructions have a variable length,
I Instructions length can’t be determined before reading first bytes,
I Many instructions with different formats are available.
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Instruction format

8086-80286

opcode opc2 immediate memory
displacement

mod
r/m
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Instruction format

80386-Pentium

size size
data

prefix prefix

address

SIBprefix
opcode

opcode opc2 immediate memory
displacement

mod
r/m
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Instruction format

3dnow!

3dnowimm

size size
data

prefix prefix

address

SIBprefix
opcode

opcode opc2 immediate memory
displacement

mod
r/m
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Instruction format

x86-64

prefix
x86−64

3dnowimm

size size
data

prefix prefix

address

SIBprefix
opcode

opcode opc2 immediate memory
displacement

mod
r/m
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Addressing mode

The x86 architecture supports several complex addressing modes. On 32
bit processors (386 and later) a memory address can contain:

I A base address register
I A address displacement
I An index register
I An multiply factor on index register

Example: mov eax, [ebx + 0x12345 + ecx * 8]

Gabriel Laskar (EPITA) CAAL 2015 314 / 378



Focus on x86 x86 story x86 architecture

Wired stack management

Specific instructions are available for stack management:
I push x instruction can be used to store data on the top of the stack

and decrement the stack pointer.
I pop x instruction removes data from the stack.
I call and ret instructions directly push and pop return address on

and from the stack.

The (e)sp register is used as stack pointer.
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Branch

I The x86 architecture uses a flag register to manage conditional
branches.

I Many different instructions with different lengthes can be used
depending on jump size.

I No delayed slot are used
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Jump size

immediate
16/32 bits

opc

E9 EB

imm.
8 bits

opc

long jump
(−32768 to +32767)

short jump
(−128 to +127)
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Instruction set

x86 instruction set is huge:
I Over 580 instructions handled by Pentium 3 CPU
I Over 850 opcodes handled by Pentium 3 CPU

A single instruction can be very complex:
I Memory access capable
I Handle different data widths
I Perform complex computation
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Instruction set extensions

Extensions to the x86 instruction set are common and all instructions are
not available on all CPUs. Starting with the pentium processor,
SIMD-based instruction sets appeared:

I MMX
I 3dNow!
I MMX2, SSE
I 3dNow2!, SSE2, SSE3, SSE4s
I To be continued...
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Instruction set
SIMD operations

source 1
register

source 2
register

destination
register

normal operation

64 bits value

64 bits value

64 bits value

SIMD operation

4 x 16 bits

4 x 16 bits

4 x 16 bits
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x86-specific coding

Due to its amazing number of available instructions, x86 code is highly
tunable for optimizations:

I High level languages compilers are not able to use all instructions
efficiently,

I Hand written assembly is often faster,
I Complex Instructions can be used to process unexpected tasks.
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Instruction set
has-been parts

I aaa, aad, aam, aas, daa, das
I xlat
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Focus on x86 x86 story Instruction set

x86-specific coding
example: LEA

The LEA instruction is designed to compute memory addresses. But it can
be used to add and multiply values.

lea eax, [ebx + ecx]

lea eax, [ebx * 8 + ebx]
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x86-specific coding
example: tiniest mem*()?

memcpy rep movbs

memset rep stosd

memcmp repe cmpsb

strncmp repnz cmpsb
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Let’s see a timeline...
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Focus on RISC processors Some instruction sets Mips

Mips
Instruction format

012345678910111213141516171819202122232425262728293031

J/JAL offset

OP rs rt imm
Special rs rt rd ... op

I 32 GPR
I hard-wired r0 to 0
I 32 FPU registers, all sizes aliased
I delay slot
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Mips
Asm code

addiu r2, r3, 0x42 ; alu reg / imm
or r3, r4, r5 ; alu reg / reg

lui r2, 0x1234 ; load upper immediate
ori r2, r2, 0x5678 ; r2 = 0x12345678

lw r4, 0x1234(r9) ; load word from r9 + 0x1234

slt r1, r2, r3 ; test if r2 < r3
bnez r1, 2f ; jump if true
nop ; delay slot

lbu r2, (r3) ; load byte, not sign extended

jal foo ; pc = foo; r31 = return address
nopGabriel Laskar (EPITA) CAAL 2015 332 / 378
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SPARC
Instruction format 012345678910111213141516171819202122232425262728293031

01 offset
012345678910111213141516171819202122232425262728293031

00 rd op2 imm

00 a cond op2 imm
012345678910111213141516171819202122232425262728293031

1x rd op3 rs1 0 asi rs2

1x rd op3 rs1 1 imm

1x rd op3 rs1 opf rs2

I 32 GPR
I hard-wired %g0 to 0
I register window
I unwindowed aliased FPU registers, 8 * 128 bits, 32 * 32 bits
I delay slotGabriel Laskar (EPITA) CAAL 2015 334 / 378
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SPARC
Asm code

add %g3, 0x42, %g2 ; alu reg / imm
or %g3, %g4, %g5 ; alu reg / reg

sethi 0x12345, %g2 ; load upper immediate (20 bits)
or %g2, 0x678, %g2 ; g2 = 0x12345678

ld [%l2 + 0x1234], %g4 ; load word from l2 + 0x1234
ld [%l2 + %i3], %g4 ; load word from l2 + i3

tst %l2, %l3 ; test if l2 < l3
blt 3f ; jump if true
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PowerPC
Instruction format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

op jump offset aa lk

op rd ra imm
op rd ra rb mb me rc

op rd ra rb op2 rc

I 32 GPR
I 32 FPR, fixed internal representation
I additional registers for lr, ctr
I no global flags, but 8 “cause registers” crx
I can merge causes with logical operations
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PowerPC
Asm code

addi 3, 2, 42 ; alu reg / imm
or. 3, 4, 5 ; alu reg / reg, update cr0

lis 3, 0x1234 ; load upper immediate (16 bits)
ori 3, 3, 0x5678 ; r3 = 0x12345678

lwz 4, 9, 0x1234 ; load word from r9 + 0x1234
lwzx 4, 9, 3 ; load word from r9 + r3

mtctr 4 ; put r4 in count register
...
bdnzl 2f ; Decrement CTR, Branch if CTR != 0

rlwinm ... ; Rotate and mask
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ARM
Instruction features

I 16 GPR, one of them is pc (r15)
I Every instruction is “guarded” by a condition. It may be:

I always, >, >=, “higher”, overflow, negative, carry, ==
I their opposites

I aliased FPR: 16 double, 32 float

You can prefix any instruction with “never”:
I 1/16th of the instruction set is “nop”...

Gabriel Laskar (EPITA) CAAL 2015 340 / 378



Focus on RISC processors Some instruction sets ARM

ARM
Instruction features

I 16 GPR, one of them is pc (r15)
I Every instruction is “guarded” by a condition. It may be:

I always, >, >=, “higher”, overflow, negative, carry, ==
I their opposites

I aliased FPR: 16 double, 32 float

You can prefix any instruction with “never”:
I 1/16th of the instruction set is “nop”...

Gabriel Laskar (EPITA) CAAL 2015 340 / 378



Focus on RISC processors Some instruction sets ARM

ARM
Instruction format

012345678910111213141516171819202122232425262728293031

cond 00 i op s rn rd imm/reg

cond 01 i p u bw l rn rd imm/reg

cond 100 p u bw l rn reg-list

cond 101 l jmp offset

cond 11 coproc, sys
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ARM
Instruction format (2)

012345678910111213141516171819202122232425262728293031

cond 00 i op s rn rd imm/reg

cond 01 i p u bw l rn rd imm/reg

1 rotate imm

0 rs 0 ty 1 rm

0 amount ty 0 rm

and r3, r7, #42 ; r3 = r7 & 0x2a
add r2, r8, r5, lsl r1 ; r2 = r8 + (r5 << r1)
sub r1, r9, r1, lsl #1 ; r1 = r9 - (r1 << 1)

012345678910111213141516171819202122232425262728293031

1110 00 1 and 0 r7 r3 « 0 0x2a

1110 00 0 add 0 r8 r2 r1 0 lsl 1 r5

1110 00 0 sub 0 r9 r1 0x1 lsl 0 r1
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ARM
Instruction format (2)

012345678910111213141516171819202122232425262728293031

cond 00 i op s rn rd imm/reg

cond 01 i p u bw l rn rd imm/reg

1 rotate imm

0 rs 0 ty 1 rm

0 amount ty 0 rm

and r3, r7, #42 ; r3 = r7 & 0x2a
add r2, r8, r5, lsl r1 ; r2 = r8 + (r5 << r1)
sub r1, r9, r1, lsl #1 ; r1 = r9 - (r1 << 1)

012345678910111213141516171819202122232425262728293031

1110 00 1 and 0 r7 r3 « 0 0x2a

1110 00 0 add 0 r8 r2 r1 0 lsl 1 r5

1110 00 0 sub 0 r9 r1 0x1 lsl 0 r1Gabriel Laskar (EPITA) CAAL 2015 342 / 378
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ARM
Asm code

add r3, r2, #0x42 ; alu reg / imm
orr r3, r4, r5 ; alu reg / reg
bic r3, r4, r5, lsr #4 ; alu reg / reg & shift

cmp r2, #0 ; test if r2 < 0
rsblt r2, r2, #0 ; then r2 = 0 - r2

ldr r2, #0x12345678 ; rewritten as
ldr r2, [pc, #offset] ; pc-relative load

streq r4, [r2, r3, lsl #4] ; store word to r2 + r3 << 4
; only if last cmp is ‘eq’

str r4, [r2, #8]! ; store word to r2 + 8
; and r2 = r2 + 8

offset: ; 32-bit immediates zone
0x12345678Gabriel Laskar (EPITA) CAAL 2015 343 / 378
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ARM
Block transfers

012345678910111213141516171819202122232425262728293031

cond 100 p u bw l rn reg-list

stmdb sp!, {r2, r3, r4, r8}
push {r2, r3, r4, r8}

012345678910111213141516171819202122232425262728293031

cond 100 1 0 0 1 0 r13 0000000100011100
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ARM
Block transfers hacks (1)
The link register is r14, then the following code saves r14 and restores it to
PC afterwards...

push {r2, r3, r4, r8, lr}
...
pop {r2, r3, r4, r8, pc}

..00

..04 sp → r2

..08 r3

..0c r4

..10 r8

..14 lr

..18 old sp → xxx

..1c

..20
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ARM
Block transfers hacks (2)

Do a memcpy with some free registers, for instance, copy 16 bytes from
*r0 to *r1, not using r2 nor r5, update r0 and r1 to point on next block...

ldmia r0!, {r3, r4, r6, r7}
stmia r1!, {r3, r4, r6, r7}
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ARM Instruction-space exhaustion

Eventually, ARM instruction-set continued to grow despite the obvious
exhaustion of the “clean” instruction-set space.

I abuse of concatenation of seldom bits around the instruction word
I sometimes forbid r15 as an operand, and reuse other fields
I reuse the “never” condition code
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ARM Instruction-space exhaustion
Illustration

012345678910111213141516171819202122232425262728293031

cond 00 I op s rn rd op2

1 rotate imm

0 rs 0 ty 1 rm

0 amount ty 0 rm

How to add the multiplication?

cond 00 0 000 a s rn rd rs 1001 rm
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Thumb mode

One goal: Code compression.
Concessions to pack a maximum of operations in a minimal space:

I Access to only 8 registers among 16
I Implicit stack ops
I Implicit pc-relative operations
I No predicates any more

Dirty hacks for making it work:
I Use lower bit of r15 as a mode indicator
I Use a new bx/blx instruction
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Thumb2

Keep up with thumb, this is great.
Ideas:

I Have an asm-code compatibility with ARM
I Remap the whole ARM 32-bit instruction set in 16-bit thumb

I 16 bit instruction words are not enough any more
Never mind

I Keep the basic 16-bit thumb encoding
I When we need more, just make the instruction 32-bits long...
I Decode mixed 16/32-bits instructions
I Only 16-bit alignment constraint for 32-bit long thumb-2 ops

Then Thumb-2 is a RISC with a CISC encoding!
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CPU-aware optimizations Rationale

Purpose

Knowing the low-level implementation of the processors, we can:
I write code easier for the compiler to translate
I write code easier for the CPU to run

I because nicer with the pipeline
I because nicer with the memory subsystem
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Nicer with the pipeline
example: abs()

The absolute value is a good example of optimized code which is easy to
implement in an efficient and smart way.
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CPU-aware optimizations Examples abs()

Nicer with the pipeline
abs() basic code

int abs(int x)
{

if (x < 0)
return -x;

else
return x;

}

int abs(int x)
{

return (x < 0) ? -x : x;
}
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CPU-aware optimizations Examples abs()

Nicer with the pipeline
example: abs()

Let’s go back to some mathematical principles:

I Addition: a + 1 = a - (-1)
I Number representation: -1 = 0xffffffff
I Negation: -a = (not a) + 1
I not a = a xor 0xffffffff = a xor -1

I if (x < 0), return
I if (x > 0), return

I Sign extension: (x » 31)
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I not a = a xor 0xffffffff = a xor -1
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I Sign extension: (x » 31)
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Nicer with the pipeline
abs() better code

int abs(int x)
{

int sign_word = x >> 31;
return (x ^ sign_word) - sign_word;

}

int abs(int x)
{

int sign_word = -(1 & (x >> 31));
return (x ^ sign_word) - sign_word;

}
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Sign extension at an arbitrary size

Sometimes, we need to sign extend a value from an arbitrary word width
(say 13 bits) to a CPU word (say 32 bits).
How to do it?

x 0000000000000000000snnnnnnnnnnnn

-high 11111111111111111111000000000000

result ssssssssssssssssssssnnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int high = 1 << (bits - 1);
return (val & high) ? (val | (-high)) : val;

}
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Power of two
Properties

I Powers of two have only one “1” bit
I Substracting 1 from a power of two flips the only “1”

Examples:
I 1110010 - 1 = 1110001
I 0100000 - 1 = 0011111

I Lower bits up to the lowest 1 get flipped
I Other bits stay the same

int is_pow2(int n)
{

return !(n & (n - 1));
}
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Mask merging

01234567

where_0 1 1 1 0 1 0 0 0
where_1 1 0 0 0 1 1 1 0

mask 0 0 1 1 1 1 0 0

result 1 1 0 0 1 1 0 0

int mask_merge(int mask, int where_0, int where_1)
{

return (mask & where_1) | (~mask & where_0);
}
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Mask merging
Less instructions

01234567

where_0 1 1 1 0 1 0 0 0
where_1 1 0 0 0 1 1 1 0

where_0 ^ where_1 0 1 1 0 0 1 1 0

mask 0 0 1 1 1 1 0 0

(w0 ^ w1) &mask 0 0 1 0 0 1 0 0

((w0 ^ w1) &mask) ^ w0 1 1 0 0 1 1 0 0

int mask_merge(int mask, int where_0, int where_1)
{

return ((where_0 ^ where_1) & mask) ^ where_0;
}
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Code readability

If you ever code with this kind of hack
I always create functions with explicit name and prototype
I eventually document the intended behavior
I may use a static inline

int abs(int x);
int sign_ext(int val, int bits);
int is_pow2(int n);
int mask_merge(int mask, int where_0, int where_1);
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Future of hardware topologies?
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Hardware topologies
Observations

Busses don’t scale
I Bandwidth is shared among connected peers
I They need rest cycles between elections

We don’t have busses any more
I We use networks (QPI, HyperTransport)
I This forbids snooping
I Coherence has to be done explicitely
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NUMA
Observations

I There are more and more cores
I Memory gets closer to the cores
I Memory connections get distributed among cores
I Systems become NUMA
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Multi-/Many-core, heterogeneous
systems Challenges

Some scalability bottlenecks

Coherent shared-memory systems
I are hard to design
I dont scale well
I get slower with the load

NUMA systems
I are hard to program for
I are not well supported in all OSes

Uncoherent shared-memory systems are not ready for prime-time yet
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