
Computer Architecture and Assembly Language

Gabriel Laskar

EPITA

2015

License

I Copyright c© 2004-2005, ACU, Benoit Perrot
I Copyright c© 2004-2008, Alexandre Becoulet
I Copyright c© 2009-2013, Nicolas Pouillon
I Copyright c© 2014, Joël Porquet
I Copyright c© 2015, Gabriel Laskar

Permission is granted to copy, distribute
and/or modify this document under the terms
of the GNU Free Documentation License, Version
1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections
being just ‘‘Copying this document’’, no
Front-Cover Texts, and no Back-Cover Texts.

Introduction

Part I

Introduction

Gabriel Laskar (EPITA) CAAL 2015 3 / 378

Introduction Problem definition

1: Introduction

Problem definition

Outline

Gabriel Laskar (EPITA) CAAL 2015 4 / 378

Introduction Problem definition

What are we trying to learn?
Computer Architecture

What is in the hardware?
I A bit of history of computers, current machines
I Concepts and conventions: processing, memory, communication,

optimization

How does a machine run code?
I Program execution model
I Memory mapping, OS support

Gabriel Laskar (EPITA) CAAL 2015 5 / 378

Introduction Problem definition

What are we trying to learn?
Assembly Language

How to “talk” with the machine directly?
I Mechanisms involved
I Assembly language structure and usage
I Low-level assembly language features
I C inline assembly

Gabriel Laskar (EPITA) CAAL 2015 6 / 378

Introduction Problem definition

Who do I talk to?

I System gurus
I Low-level enthusiasts

I Programmers
I Wise managers

Gabriel Laskar (EPITA) CAAL 2015 7 / 378

Introduction Problem definition

Who do I talk to?

I System gurus
I Low-level enthusiasts
I Programmers

I Wise managers

Gabriel Laskar (EPITA) CAAL 2015 7 / 378

Introduction Problem definition

Who do I talk to?

I System gurus
I Low-level enthusiasts
I Programmers

C/C++

I Wise managers

Gabriel Laskar (EPITA) CAAL 2015 7 / 378

Introduction Problem definition

Who do I talk to?

I System gurus
I Low-level enthusiasts
I Programmers

C/C++, Objective-C

I Wise managers

Gabriel Laskar (EPITA) CAAL 2015 7 / 378

Introduction Problem definition

Who do I talk to?

I System gurus
I Low-level enthusiasts
I Programmers

C/C++, Objective-C, C#

I Wise managers

Gabriel Laskar (EPITA) CAAL 2015 7 / 378

Introduction Problem definition

Who do I talk to?

I System gurus
I Low-level enthusiasts
I Programmers

C/C++, Objective-C, C#, Java

I Wise managers

Gabriel Laskar (EPITA) CAAL 2015 7 / 378

Introduction Problem definition

Who do I talk to?

I System gurus
I Low-level enthusiasts
I Programmers

C/C++, Objective-C, C#, Java, JS/AS

I Wise managers

Gabriel Laskar (EPITA) CAAL 2015 7 / 378

Introduction Problem definition

Who do I talk to?

I System gurus
I Low-level enthusiasts
I Programmers at any level:

(C/C++, Objective-C, C#, Java, JS/AS, etc.)

I Wise managers

Gabriel Laskar (EPITA) CAAL 2015 7 / 378

Introduction Problem definition

Who do I talk to?

I System gurus
I Low-level enthusiasts
I Programmers at any level:

(C/C++, Objective-C, C#, Java, JS/AS, etc.)
I Wise managers

Gabriel Laskar (EPITA) CAAL 2015 7 / 378

Introduction Outline

1: Introduction

Problem definition

Outline

Gabriel Laskar (EPITA) CAAL 2015 8 / 378

Introduction Outline

Course outline

I Processor architecture
I Memory
I Memory mapping
I Execution flow
I Object file formats
I Assembly programming
I Focus on x86
I Focus on RISC processors
I CPU-aware optimizations
I Multi-/Many-core, heterogeneous systems

Gabriel Laskar (EPITA) CAAL 2015 9 / 378

Processor architecture

Part II

Processor architecture

Gabriel Laskar (EPITA) CAAL 2015 10 / 378

Processor architecture Overview

2: Processor architecture

Overview

Inside the processor

Processor units

Instructions

Instruction flow

Pipeline processor

CISC & RISC architectures

Gabriel Laskar (EPITA) CAAL 2015 11 / 378

Processor architecture Overview

What a processor is...

A processor must be able to perform the following basic tasks:
I Execute instructions
I Read operands
I Store results

It needs several basic units to perform those tasks:
I A control unit
I An arithmetic and logical unit (ALU)
I A register bank

Let’s design it!

Gabriel Laskar (EPITA) CAAL 2015 12 / 378

Processor architecture Overview

What a processor is...

A processor must be able to perform the following basic tasks:
I Execute instructions
I Read operands
I Store results

It needs several basic units to perform those tasks:
I A control unit
I An arithmetic and logical unit (ALU)
I A register bank

Let’s design it!

Gabriel Laskar (EPITA) CAAL 2015 12 / 378

Processor architecture Overview

Basic architecture

Control Unit

ALU

R1

R0

= 0123

= 0100

= 0023

R5

R4

R3

R2

R
eg

is
te

rs

Gabriel Laskar (EPITA) CAAL 2015 13 / 378

Processor architecture Overview

Basic architecture (2)

In this model, the system state is entirely contained in the processor.
I This might be sufficient for a very basic processor
I More features could be leveraged by adding registers or program steps

Unfortunately,
I Internal memory is expensive and hard to design
I There is no communication
I Updating the program may not be easy

We need an access to memory, external devices, etc.

Gabriel Laskar (EPITA) CAAL 2015 14 / 378

Processor architecture Overview

Basic architecture (2)

In this model, the system state is entirely contained in the processor.
I This might be sufficient for a very basic processor
I More features could be leveraged by adding registers or program steps

Unfortunately,
I Internal memory is expensive and hard to design
I There is no communication
I Updating the program may not be easy

We need an access to memory, external devices, etc.

Gabriel Laskar (EPITA) CAAL 2015 14 / 378

Processor architecture Overview

Basic architecture (2)

In this model, the system state is entirely contained in the processor.
I This might be sufficient for a very basic processor
I More features could be leveraged by adding registers or program steps

Unfortunately,
I Internal memory is expensive and hard to design
I There is no communication
I Updating the program may not be easy

We need an access to memory, external devices, etc.

Gabriel Laskar (EPITA) CAAL 2015 14 / 378

Processor architecture Overview

Revised processor model

A processor must be able to perform the following basic tasks:
I Fetch instructions from an external entity and understand them (fetch

and decode)
I Execute instructions
I Store results to registers or external memory

It needs several basic units to perform those tasks:
I A control unit
I An arithmetic and logical unit (ALU)
I A register bank
I A program memory access
I A data memory access

Gabriel Laskar (EPITA) CAAL 2015 15 / 378

Processor architecture Overview

Revised processor model

A processor must be able to perform the following basic tasks:
I Fetch instructions from an external entity and understand them (fetch

and decode)
I Execute instructions
I Store results to registers or external memory

It needs several basic units to perform those tasks:
I A control unit
I An arithmetic and logical unit (ALU)
I A register bank
I A program memory access
I A data memory access

Gabriel Laskar (EPITA) CAAL 2015 15 / 378

Processor architecture Overview

Revised processor model (2)

In
st

ru
ct

io
n

 @

C
o

d
e

C
o

m
m

an
d

R
 D

at
a

D
at

a
@

W
 D

at
a

Control Unit

ALU

R1

R0

= 0123

= 0100

= 0023

R5

R4

R3

R2

R
eg

is
te

rs

Gabriel Laskar (EPITA) CAAL 2015 16 / 378

Processor architecture Overview

Processor physical layout

A processor is composed of many different units:
I Caches, MMU
I Integer unit, Control unit, Floating-point unit

Each unit is:
I implemented as an hardware component
I made of switchable parts (transistors)

In old processors:
I Units used to be independent chips
I Some were even optional “coprocessors”

Today, processors are embedded on a single chip.

Gabriel Laskar (EPITA) CAAL 2015 17 / 378

Processor architecture Inside the processor

2: Processor architecture

Overview

Inside the processor

Processor units

Instructions

Instruction flow

Pipeline processor

CISC & RISC architectures

Gabriel Laskar (EPITA) CAAL 2015 18 / 378

Processor architecture Inside the processor

Processor package

Gabriel Laskar (EPITA) CAAL 2015 19 / 378

Processor architecture Inside the processor

Processor physical layout

Gabriel Laskar (EPITA) CAAL 2015 20 / 378

Processor architecture Inside the processor

Processor physical layout

Gabriel Laskar (EPITA) CAAL 2015 21 / 378

Processor architecture Inside the processor

Processor physical layout
Transistor details

Gabriel Laskar (EPITA) CAAL 2015 22 / 378

Processor architecture Processor units

2: Processor architecture

Overview

Inside the processor

Processor units

Instructions

Instruction flow

Pipeline processor

CISC & RISC architectures

Gabriel Laskar (EPITA) CAAL 2015 23 / 378

Processor architecture Processor units

Units

I Control unit fetches and
decodes the instruction

I Registers gives the data
I ALU implements the

operation
I Some instructions access

external data

In
st

ru
ct

io
n

 @

C
o

d
e

C
o

m
m

an
d

R
 D

at
a

D
at

a
@

W
 D

at
a

Control Unit

ALU

R1

R0

= 0123

= 0100

= 0023

R5

R4

R3

R2

R
eg

is
te

rs

Gabriel Laskar (EPITA) CAAL 2015 24 / 378

Processor architecture Processor units

Registers
May be seen as variables located inside the processor

I 8, 16, 32, 64, 128, ... -bits large
I General-purpose registers:

I integer (int)
I floating point (float, double)

I Specialized registers:
I flags

I Zero,
I Negative,
I Carry,
I Overflow,
I etc.

I system
I Mode,
I IRQ masking,
I etc.

Gabriel Laskar (EPITA) CAAL 2015 25 / 378

Processor architecture Processor units

ALU: Arithmetic and Logical Unit
An unit without registers!

I Logical operations
I AND, OR, XOR, NOT, NOR

I Arithmetic operations
I addition, subtraction, multiplication, division

I Shifts
I Compares

Division is not possible without registers!

Gabriel Laskar (EPITA) CAAL 2015 26 / 378

Processor architecture Instructions

2: Processor architecture

Overview

Inside the processor

Processor units

Instructions

Instruction flow

Pipeline processor

CISC & RISC architectures

Gabriel Laskar (EPITA) CAAL 2015 27 / 378

Processor architecture Instructions

Instruction types

There are different instruction types:
I Arithmetic and logical operations
I Control instructions
I Memory access instructions

Gabriel Laskar (EPITA) CAAL 2015 28 / 378

Processor architecture Instructions

Instructions classification

Flynn’s taxonomy:
I SISD: Single Instruction, Single Data

Classical Von Neumann architecture
I SIMD: Single Instruction, Multiple Data

Vectorial computers
I MIMD: Multiple Instruction, Multiple Data

Multiprocessor computers

Gabriel Laskar (EPITA) CAAL 2015 29 / 378

Processor architecture Instruction flow

2: Processor architecture

Overview

Inside the processor

Processor units

Instructions

Instruction flow

Pipeline processor

CISC & RISC architectures

Gabriel Laskar (EPITA) CAAL 2015 30 / 378

Processor architecture Instruction flow

Microprogrammed processor
Instruction flow

Processors may use a finite state machine or micro ops to process each
instruction step (Fetch, Decode, Execute, Memory access, Register write
back, etc.)

A basic processor needs several clock cycles to process all steps of the
current instruction before starting the next one.

Fetch

P
C

 a
d

d
re

ss

sub

jmp

ld

Gabriel Laskar (EPITA) CAAL 2015 31 / 378

Processor architecture Instruction flow

Microprogrammed processor
Instruction flow

Processors may use a finite state machine or micro ops to process each
instruction step (Fetch, Decode, Execute, Memory access, Register write
back, etc.)

A basic processor needs several clock cycles to process all steps of the
current instruction before starting the next one.

DecodFetch

P
C

 a
d

d
re

ss

sub

jmp

ld

Gabriel Laskar (EPITA) CAAL 2015 31 / 378

Processor architecture Instruction flow

Microprogrammed processor
Instruction flow

Processors may use a finite state machine or micro ops to process each
instruction step (Fetch, Decode, Execute, Memory access, Register write
back, etc.)

A basic processor needs several clock cycles to process all steps of the
current instruction before starting the next one.

ExecDecodFetch

P
C

 a
d

d
re

ss

sub

jmp

ld

Gabriel Laskar (EPITA) CAAL 2015 31 / 378

Processor architecture Instruction flow

Microprogrammed processor
Instruction flow

Processors may use a finite state machine or micro ops to process each
instruction step (Fetch, Decode, Execute, Memory access, Register write
back, etc.)

A basic processor needs several clock cycles to process all steps of the
current instruction before starting the next one.

WriteExecDecodFetch

P
C

 a
d

d
re

ss

sub

jmp

ld

Gabriel Laskar (EPITA) CAAL 2015 31 / 378

Processor architecture Instruction flow

Microprogrammed processor
Instruction flow

Processors may use a finite state machine or micro ops to process each
instruction step (Fetch, Decode, Execute, Memory access, Register write
back, etc.)

A basic processor needs several clock cycles to process all steps of the
current instruction before starting the next one.

Fetch

WriteExecDecodFetch

P
C

 a
d

d
re

ss

sub

jmp

ld

Gabriel Laskar (EPITA) CAAL 2015 31 / 378

Processor architecture Instruction flow

Microprogrammed processor
Instruction flow

Processors may use a finite state machine or micro ops to process each
instruction step (Fetch, Decode, Execute, Memory access, Register write
back, etc.)

A basic processor needs several clock cycles to process all steps of the
current instruction before starting the next one.

DecodFetch

WriteExecDecodFetch

P
C

 a
d

d
re

ss

sub

jmp

ld

Gabriel Laskar (EPITA) CAAL 2015 31 / 378

Processor architecture Instruction flow

Microprogrammed processor
Instruction flow

Processors may use a finite state machine or micro ops to process each
instruction step (Fetch, Decode, Execute, Memory access, Register write
back, etc.)

A basic processor needs several clock cycles to process all steps of the
current instruction before starting the next one.

ExecDecodFetch

WriteExecDecodFetch

P
C

 a
d

d
re

ss

sub

jmp

ld

Gabriel Laskar (EPITA) CAAL 2015 31 / 378

Processor architecture Instruction flow

Microprogrammed processor
Instruction flow

Processors may use a finite state machine or micro ops to process each
instruction step (Fetch, Decode, Execute, Memory access, Register write
back, etc.)

A basic processor needs several clock cycles to process all steps of the
current instruction before starting the next one.

Fetch

ExecDecodFetch

WriteExecDecodFetch

P
C

 a
d

d
re

ss

sub

jmp

ld

Gabriel Laskar (EPITA) CAAL 2015 31 / 378

Processor architecture Instruction flow

Microprogrammed processor
Instruction flow

Processors may use a finite state machine or micro ops to process each
instruction step (Fetch, Decode, Execute, Memory access, Register write
back, etc.)

A basic processor needs several clock cycles to process all steps of the
current instruction before starting the next one.

DecodFetch

ExecDecodFetch

WriteExecDecodFetch

P
C

 a
d

d
re

ss

sub

jmp

ld

Gabriel Laskar (EPITA) CAAL 2015 31 / 378

Processor architecture Instruction flow

Microprogrammed processor
Instruction flow

Processors may use a finite state machine or micro ops to process each
instruction step (Fetch, Decode, Execute, Memory access, Register write
back, etc.)

A basic processor needs several clock cycles to process all steps of the
current instruction before starting the next one.

ExecDecodFetch

ExecDecodFetch

WriteExecDecodFetch

P
C

 a
d

d
re

ss

sub

jmp

ld

Gabriel Laskar (EPITA) CAAL 2015 31 / 378

Processor architecture Instruction flow

Microprogrammed processor
Instruction flow

Processors may use a finite state machine or micro ops to process each
instruction step (Fetch, Decode, Execute, Memory access, Register write
back, etc.)

A basic processor needs several clock cycles to process all steps of the
current instruction before starting the next one.

MemExecDecodFetch

ExecDecodFetch

WriteExecDecodFetch

P
C

 a
d

d
re

ss

sub

jmp

ld

Gabriel Laskar (EPITA) CAAL 2015 31 / 378

Processor architecture Instruction flow

Microprogrammed processor
Instruction flow

Processors may use a finite state machine or micro ops to process each
instruction step (Fetch, Decode, Execute, Memory access, Register write
back, etc.)

A basic processor needs several clock cycles to process all steps of the
current instruction before starting the next one.

WriteMemExecDecodFetch

ExecDecodFetch

WriteExecDecodFetch

P
C

 a
d

d
re

ss

sub

jmp

ld

Gabriel Laskar (EPITA) CAAL 2015 31 / 378

Processor architecture Instruction flow

Microprogrammed processor
Pro/cons

Cons:
I Slow
I The more complex the instructions are, the longer they take to get

processed
I Most of the hardware is used only once for each instruction
I Most of the hardware is unused most of the time

Pros:
I Easy to implement
I Small
I New instructions can be added just by adding new steps

Gabriel Laskar (EPITA) CAAL 2015 32 / 378

Processor architecture Instruction flow

Microprogrammed processor
Pro/cons

Cons:
I Slow
I The more complex the instructions are, the longer they take to get

processed
I Most of the hardware is used only once for each instruction
I Most of the hardware is unused most of the time

Pros:
I Easy to implement
I Small
I New instructions can be added just by adding new steps

Gabriel Laskar (EPITA) CAAL 2015 32 / 378

Processor architecture Pipeline processor

2: Processor architecture

Overview

Inside the processor

Processor units

Instructions

Instruction flow

Pipeline processor

CISC & RISC architectures

Gabriel Laskar (EPITA) CAAL 2015 33 / 378

Processor architecture Pipeline processor

Pipelined processor
Instruction flow
A pipeline architecture enables the parallel execution of several
instructions:

I Split the execution of each instruction in several steps
I Each step performs an elementary operation
I Each step is associated to a specific part of the hardware
I All parts of the hardware work in parallel

Fetch Decode Exec Memory

Instruction

memory

access

Data

memory

access

Writeback

Gabriel Laskar (EPITA) CAAL 2015 34 / 378

Processor architecture Pipeline processor

Pipeline
Flow

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Fetch?

Gabriel Laskar (EPITA) CAAL 2015 35 / 378

Processor architecture Pipeline processor

Pipeline
Flow

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Decod

Fetch?

Fetch

Gabriel Laskar (EPITA) CAAL 2015 35 / 378

Processor architecture Pipeline processor

Pipeline
Flow

not

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Fetch

Decod

Exec

?

Decod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 35 / 378

Processor architecture Pipeline processor

Pipeline
Flow

add

not

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

Decod

Fetch

Mem

?

Fetch

Decod

ExecDecod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 35 / 378

Processor architecture Pipeline processor

Pipeline
Flow

Exec

Decod

Fetch

Mem

Write

?

jmp

add

not

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 35 / 378

Processor architecture Pipeline processor

Pipeline
Flow

sub

Exec

Decod

Fetch

Mem

Write

?

Exec

Decod

Fetch

Mem

Write

jmp

add

not

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 35 / 378

Processor architecture Pipeline processor

Pipeline
Flow

sub

Fetch

Decod

Exec

Write

Mem

?

Exec

Decod

Fetch

Mem

Write

Exec

Decod

Fetch

Mem

Write

add

jmp

add

not

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 35 / 378

Processor architecture Pipeline processor

Speeding up the pipeline

Current processors extensively use the pipeline architecture to accelerate
the execution of instructions.

Because a pipeline architecture works in parallel, the slowest step delay
determines the pipeline global cycle delay (and working frequency).

8 ns18 ns10 ns

Step 1 Step 2 Step 3

Gabriel Laskar (EPITA) CAAL 2015 36 / 378

Processor architecture Pipeline processor

Speeding up the pipeline
Splitting operations in shorter steps enables the processor frequency to
increase.

8 ns18 ns10 ns

Step 1 Step 2 Step 3

Step 1

10 ns 9 ns

Step 2.1 Step 2.2 Step 3

8 ns9 ns

Gabriel Laskar (EPITA) CAAL 2015 37 / 378

Processor architecture CISC & RISC architectures

2: Processor architecture

Overview

Inside the processor

Processor units

Instructions

Instruction flow

Pipeline processor

CISC & RISC architectures

Gabriel Laskar (EPITA) CAAL 2015 38 / 378

Processor architecture CISC & RISC architectures

Instruction-set classification

Based on internal architecture and instructions formats, processor
architectures may be classified in two groups:

I Complex Instruction Set Computer (CISC)
I Reduced Instruction Set Computer (RISC)

Early processor architectures were mostly CISC-based: z80, Intel x86,
Motorola 68000, etc.

More recent designs are rather RISC-based: MIPS, Sparc, Alpha,
PowerPC, ARM, etc.

Gabriel Laskar (EPITA) CAAL 2015 39 / 378

Processor architecture CISC & RISC architectures

RISC
Characteristics

Pros:
I Simple instructions
I Fixed-length instructions
I Decoding instructions requires simple hardware

Cons:
I Programs are longer as they need more instructions
I Optimization is harder, compilers need to be smarter

Sometimes said as “Reject Important Stuff into Compiler”

Gabriel Laskar (EPITA) CAAL 2015 40 / 378

Processor architecture CISC & RISC architectures

RISC
Instruction example

sub %g1, %g2, %g3

0x200x86 0x40 0x02

00010000000000000010001000001110

%g3 sub %g1 %g2

source unused sourceformat destination opcode

Gabriel Laskar (EPITA) CAAL 2015 41 / 378

Processor architecture CISC & RISC architectures

CISC
Characteristics

Pros:
I Lots of instructions and opcodes
I A single instruction can perform complex operations
I Assembly programs are easier and shorter to write
I Code compression ratio is good

Cons:
I Binary instruction format has variable length
I It requires more complex hardware and high frequencies are harder to

achieve

Modern processors often internally translate the CISC code to RISC
microcode

Gabriel Laskar (EPITA) CAAL 2015 42 / 378

Processor architecture CISC & RISC architectures

CISC
Instruction example

opcode opc2 immediate memory
displacement

mod
r/m

Gabriel Laskar (EPITA) CAAL 2015 43 / 378

Memory

Part III

Memory

Gabriel Laskar (EPITA) CAAL 2015 44 / 378

Memory Memories

3: Memory

Memories
Memory types
Access examples

Memory accessing modes

Alignment

Endianness

Caches

Gabriel Laskar (EPITA) CAAL 2015 45 / 378

Memory Memories Memory types

3: Memory

Memories
Memory types
Access examples

Memory accessing modes

Alignment

Endianness

Caches

Gabriel Laskar (EPITA) CAAL 2015 46 / 378

Memory Memories Memory types

Reasons to access memory

How does the memory work with the processor?
I Memory is used to fetch instructions,
I Memory is used to access data.
I There may be one unique memory, or two.

I If there is one memory, instruction / data accesses must be
sequencialized

I If there are two, code cannot be accessed as data
Conventional names:
1 Von Neuman architecture
2 Harvard architecture

Gabriel Laskar (EPITA) CAAL 2015 47 / 378

Memory Memories Access examples

3: Memory

Memories
Memory types
Access examples

Memory accessing modes

Alignment

Endianness

Caches

Gabriel Laskar (EPITA) CAAL 2015 48 / 378

Memory Memories Access examples

Instruction fetch
The processor needs an instruction to process

Processor

Memory

Gabriel Laskar (EPITA) CAAL 2015 49 / 378

Memory Memories Access examples

Instruction fetch
The processor needs an instruction to process

In
st

ru
ct

io
n
 @

Processor

Memory

Gabriel Laskar (EPITA) CAAL 2015 49 / 378

Memory Memories Access examples

Instruction fetch
The processor needs an instruction to process

C
o
d
e

In
st

ru
ct

io
n
 @

Processor

Memory

Gabriel Laskar (EPITA) CAAL 2015 49 / 378

Memory Memories Access examples

Data access
load
Load the content of the memory cells pointed to by %g1 into %g2 register.

Processor

Memory

ld [%g1], %g2

Gabriel Laskar (EPITA) CAAL 2015 50 / 378

Memory Memories Access examples

Data access
load
Load the content of the memory cells pointed to by %g1 into %g2 register.

C
o
m

m
an

d

D
at

a
@

Processor

Memory

ld [%g1], %g2

Gabriel Laskar (EPITA) CAAL 2015 50 / 378

Memory Memories Access examples

Data access
load
Load the content of the memory cells pointed to by %g1 into %g2 register.

R
 D

at
a

C
o
m

m
an

d

D
at

a
@

Processor

Memory

ld [%g1], %g2

Gabriel Laskar (EPITA) CAAL 2015 50 / 378

Memory Memories Access examples

Data access
store
Stores the content of %g2 register into the memory cells pointed to by %g1.

Processor

Memory

st %g2, [%g1]

Gabriel Laskar (EPITA) CAAL 2015 51 / 378

Memory Memories Access examples

Data access
store
Stores the content of %g2 register into the memory cells pointed to by %g1.

W
 D

at
a

C
o
m

m
an

d

D
at

a
@

Processor

Memory

st %g2, [%g1]

Gabriel Laskar (EPITA) CAAL 2015 51 / 378

Memory Memory accessing modes

3: Memory

Memories

Memory accessing modes
Immediate addressing
Absolute addressing
Register indirect addressing
Complex addressing

Alignment

Endianness

Caches

Gabriel Laskar (EPITA) CAAL 2015 52 / 378

Memory Memory accessing modes Immediate addressing

3: Memory

Memories

Memory accessing modes
Immediate addressing
Absolute addressing
Register indirect addressing
Complex addressing

Alignment

Endianness

Caches

Gabriel Laskar (EPITA) CAAL 2015 53 / 378

Memory Memory accessing modes Immediate addressing

Immediate addressing

I The value of data is directly stored in the instruction
I No memory access needed to get the value

In C language:
int a, b = ...;

a = b + 0x831;

In assembly language:
add %g1, 0x831, %g2

Gabriel Laskar (EPITA) CAAL 2015 54 / 378

Memory Memory accessing modes Immediate addressing

Immediate addressing

I The value of data is directly stored in the instruction
I No memory access needed to get the value

In C language:
int a, b = ...;

a = b + 0x831;

In assembly language:
add %g1, 0x831, %g2

Gabriel Laskar (EPITA) CAAL 2015 54 / 378

Memory Memory accessing modes Immediate addressing

Immediate addressing

I The value of data is directly stored in the instruction
I No memory access needed to get the value

In C language:
int a, b = ...;

a = b + 0x831;

In assembly language:
add %g1, 0x831, %g2

Gabriel Laskar (EPITA) CAAL 2015 54 / 378

Memory Memory accessing modes Immediate addressing

Immediate addressing
Sparc instruction details

0x200x84

000010001000001010

%g2 sub %g1

sourceformat destination opcode

sub %g1, 0x831, %g2

0x68 0x31

0x831

1 0 1000 0011 0001

immediate

Gabriel Laskar (EPITA) CAAL 2015 55 / 378

Memory Memory accessing modes Absolute addressing

3: Memory

Memories

Memory accessing modes
Immediate addressing
Absolute addressing
Register indirect addressing
Complex addressing

Alignment

Endianness

Caches

Gabriel Laskar (EPITA) CAAL 2015 56 / 378

Memory Memory accessing modes Absolute addressing

Absolute addressing

I The address of the data is stored in the instruction
I A memory access is needed to get the value

In C language:
int a = *(int*)0x830;

In assembly language:
ld [0x830], %g1

Gabriel Laskar (EPITA) CAAL 2015 57 / 378

Memory Memory accessing modes Absolute addressing

Absolute addressing

I The address of the data is stored in the instruction
I A memory access is needed to get the value

In C language:
int a = *(int*)0x830;

In assembly language:
ld [0x830], %g1

Gabriel Laskar (EPITA) CAAL 2015 57 / 378

Memory Memory accessing modes Absolute addressing

Absolute addressing

I The address of the data is stored in the instruction
I A memory access is needed to get the value

In C language:
int a = *(int*)0x830;

In assembly language:
ld [0x830], %g1

Gabriel Laskar (EPITA) CAAL 2015 57 / 378

Memory Memory accessing modes Register indirect addressing

3: Memory

Memories

Memory accessing modes
Immediate addressing
Absolute addressing
Register indirect addressing
Complex addressing

Alignment

Endianness

Caches

Gabriel Laskar (EPITA) CAAL 2015 58 / 378

Memory Memory accessing modes Register indirect addressing

Register indirect addressing

I The address of the data is stored in a register
I A memory access is needed to get the value

In C language:
int a, *b = ...;

a = *b;

In assembly language:
ld [%g2], %g1

Gabriel Laskar (EPITA) CAAL 2015 59 / 378

Memory Memory accessing modes Register indirect addressing

Register indirect addressing

I The address of the data is stored in a register
I A memory access is needed to get the value

In C language:
int a, *b = ...;

a = *b;

In assembly language:
ld [%g2], %g1

Gabriel Laskar (EPITA) CAAL 2015 59 / 378

Memory Memory accessing modes Register indirect addressing

Register indirect addressing

I The address of the data is stored in a register
I A memory access is needed to get the value

In C language:
int a, *b = ...;

a = *b;

In assembly language:
ld [%g2], %g1

Gabriel Laskar (EPITA) CAAL 2015 59 / 378

Memory Memory accessing modes Complex addressing

3: Memory

Memories

Memory accessing modes
Immediate addressing
Absolute addressing
Register indirect addressing
Complex addressing

Alignment

Endianness

Caches

Gabriel Laskar (EPITA) CAAL 2015 60 / 378

Memory Memory accessing modes Complex addressing

Complex addressing

I Register indirect with base register
I Register indirect with offset
I And many others...

Assembly example:
ld [%g2 + 0x124], %g1
ld [%g2 + %g3], %g1

Gabriel Laskar (EPITA) CAAL 2015 61 / 378

Memory Alignment

3: Memory

Memories

Memory accessing modes

Alignment
Memory access alignment
Structure alignment
packed structures

Endianness

Caches

Gabriel Laskar (EPITA) CAAL 2015 62 / 378

Memory Alignment Memory access alignment

3: Memory

Memories

Memory accessing modes

Alignment
Memory access alignment
Structure alignment
packed structures

Endianness

Caches

Gabriel Laskar (EPITA) CAAL 2015 63 / 378

Memory Alignment Memory access alignment

Definition

Data access alignment is solely about considered data type width.
I 32-bit integer access is aligned for addresses multiple of 4
I 16-bit integer access is aligned for even addresses
I 8-bit integer (char) accesses are always aligned!

Think about address % sizeof(type)

Gabriel Laskar (EPITA) CAAL 2015 64 / 378

Memory Alignment Memory access alignment

Access alignment

0x00

0x10

0x04

0x08

0x0c

Bus Width

Data read

0x6b0x5a

0xef0xcd 0x9f 0x8c

0xab0x89

0x56 0x780x340x01
Address

Gabriel Laskar (EPITA) CAAL 2015 65 / 378

Memory Alignment Structure alignment

3: Memory

Memories

Memory accessing modes

Alignment
Memory access alignment
Structure alignment
packed structures

Endianness

Caches

Gabriel Laskar (EPITA) CAAL 2015 66 / 378

Memory Alignment Structure alignment

Structure alignment

In a structure:
I Fields must be in declaration order
I Fields must all be aligned

Data alignment does not depend on architecture bus width

15 160 32

struct bit_packed_s

{

 int a;

 short b;

 short c;
};

c

a

b

Gabriel Laskar (EPITA) CAAL 2015 67 / 378

Memory Alignment Structure alignment

Padding
Sometimes, consecutive fields in declaration cannot be consecutive and
aligned in memory

I Compilers put structure fields at aligned offsets
I Alignment may add unused padding bytes between fields

15 160 32

struct example_aligned_s

{

 int b;

 short c;
};

 char a;

a

b

c

padding bytes

Gabriel Laskar (EPITA) CAAL 2015 68 / 378

Memory Alignment Structure alignment

Padding
Sometimes, consecutive fields in declaration cannot be consecutive and
aligned in memory

I Compilers put structure fields at aligned offsets
I Alignment may add unused padding bytes between fields

15 160 32

struct example_aligned_s

{

 int b;

 short c;
};

 char a;

a

b

c

padding bytes
Gabriel Laskar (EPITA) CAAL 2015 68 / 378

Memory Alignment packed structures

3: Memory

Memories

Memory accessing modes

Alignment
Memory access alignment
Structure alignment
packed structures

Endianness

Caches

Gabriel Laskar (EPITA) CAAL 2015 69 / 378

Memory Alignment packed structures

Basic packing

I Fields alignment can be ignored by compiler, on request
I Few architectures are able to access non aligned fields directly
I If non-native, unaligned access is emulated with multiple memory

accesses, shifts, ORs, etc.

struct example_packed_s

{

 int b;

 short c;

 char a;

}

__attribute__((packed));

15 160 32

a b

c

Gabriel Laskar (EPITA) CAAL 2015 70 / 378

Memory Alignment packed structures

Low-level packing
I Packing can even be done at bit level!
I Compiler will handle shifts and masks
I Can be mixed with union
I Powerful for matching existing protocols

struct bit_packed_s

{

 int a:17;

 int b:5;

 int c:12;

 int d:16;

 int e:14;

}

__attribute__((packed));

a

d

cb

e

15 160 32

Beware of endianness
Gabriel Laskar (EPITA) CAAL 2015 71 / 378

Memory Endianness

3: Memory

Memories

Memory accessing modes

Alignment

Endianness
Different designs, different paradigms
Explaination
Demo

Caches

Gabriel Laskar (EPITA) CAAL 2015 72 / 378

Memory Endianness Different designs, different paradigms

3: Memory

Memories

Memory accessing modes

Alignment

Endianness
Different designs, different paradigms
Explaination
Demo

Caches

Gabriel Laskar (EPITA) CAAL 2015 73 / 378

Memory Endianness Different designs, different paradigms

Endianness

A data string represented with multiple bytes must be stored in memory.
Similarly to written language, these bytes may be written “left-to-right” or
“right-to-left”.

I Big-Endian
I Little-Endian
I Other endian modes

Gabriel Laskar (EPITA) CAAL 2015 74 / 378

Memory Endianness Explaination

3: Memory

Memories

Memory accessing modes

Alignment

Endianness
Different designs, different paradigms
Explaination
Demo

Caches

Gabriel Laskar (EPITA) CAAL 2015 75 / 378

Memory Endianness Explaination

Endianness
Mathematical reference

With a base b, a natural N may be decomposed in digits dk .
If we naturally write it:
N = dndn−1...dk ...d1d0
N = dn · bn + dn−1 · bn−1 + · · ·+ dk · bk + · · ·+ d1 · b1 + d0 · b0

N = 4810310 = bbe716
I With b = 10: N = 4 · 104 + 8 · 103 + 1 · 102 + 0 · 101 + 3 · 100
I With b = 16: N = 11 · 163 + 11 · 162 + 14 · 161 + 7 · 160

So logically we tend to count digits from LSB: right to left

Digit no 4 3 2 1 0
Base 10 value 4 8 1 0 3
Base 16 value b b e 7

Gabriel Laskar (EPITA) CAAL 2015 76 / 378

Memory Endianness Explaination

Endianness
Mathematical reference

With a base b, a natural N may be decomposed in digits dk .
If we naturally write it:
N = dndn−1...dk ...d1d0
N = dn · bn + dn−1 · bn−1 + · · ·+ dk · bk + · · ·+ d1 · b1 + d0 · b0

N = 4810310 = bbe716
I With b = 10: N = 4 · 104 + 8 · 103 + 1 · 102 + 0 · 101 + 3 · 100
I With b = 16: N = 11 · 163 + 11 · 162 + 14 · 161 + 7 · 160

So logically we tend to count digits from LSB: right to left

Digit no 4 3 2 1 0
Base 10 value 4 8 1 0 3
Base 16 value b b e 7

Gabriel Laskar (EPITA) CAAL 2015 76 / 378

Memory Endianness Explaination

Endianness
Mathematical reference

With a base b, a natural N may be decomposed in digits dk .
If we naturally write it:
N = dndn−1...dk ...d1d0
N = dn · bn + dn−1 · bn−1 + · · ·+ dk · bk + · · ·+ d1 · b1 + d0 · b0

N = 4810310 = bbe716
I With b = 10: N = 4 · 104 + 8 · 103 + 1 · 102 + 0 · 101 + 3 · 100
I With b = 16: N = 11 · 163 + 11 · 162 + 14 · 161 + 7 · 160

So logically we tend to count digits from LSB: right to left

Digit no 4 3 2 1 0
Base 10 value 4 8 1 0 3
Base 16 value b b e 7

Gabriel Laskar (EPITA) CAAL 2015 76 / 378

Memory Endianness Explaination

Memory representation

Usually, we like to represent memory in written order, the same way we
write words on a paper sheet: left to right

0 1 2 3
0x00 ’A’ ’ ’ ’s’ ’i’
0x04 ’m’ ’p’ ’l’ ’e’
0x08 ’ ’ ’m’ ’e’ ’s’
0x0c ’s’ ’a’ ’g’ ’e’

Gabriel Laskar (EPITA) CAAL 2015 77 / 378

Memory Endianness Explaination

Integer memory representation
The “endianness” problem is whether to write integers

I in text order: the natural way (for western languages)
I in index order: with digit 0 at address 0

3 2 1 0

0x00

0x10

0x04

0x08

0x0c

20 21 22 23

00 02 03

10 12

40

01

31 32

41 42

13

33

43

11

30

Gabriel Laskar (EPITA) CAAL 2015 78 / 378

Memory Endianness Explaination

Integer memory representation
The “endianness” problem is whether to write integers

I in text order: the natural way (for western languages)
I in index order: with digit 0 at address 0

3 2 1 0

20 21 22 23
Big endian

0x00

0x10

0x04

0x08

0x0c

20 21 22 23

00 02 03

10 12

40

01

31 32

41 42

13

33

43

11

30

Gabriel Laskar (EPITA) CAAL 2015 78 / 378

Memory Endianness Explaination

Integer memory representation
The “endianness” problem is whether to write integers

I in text order: the natural way (for western languages)
I in index order: with digit 0 at address 0

3 2 1 0

2023 22 21
Little endian

0x00

0x10

0x04

0x08

0x0c

20 21 22 23

00 02 03

10 12

40

01

31 32

41 42

13

33

43

11

30

Gabriel Laskar (EPITA) CAAL 2015 78 / 378

Memory Endianness Explaination

Integer memory representation
The “endianness” problem is whether to write integers

I in text order: the natural way (for western languages)
I in index order: with digit 0 at address 0

3 2 1 0

2023 22 21
Little endian

0x00

0x10

0x04

0x08

0x0c

2023 22 21

00

10

40

30

03

13

33

43

02

12

32

42

01

31

41

11

0x00

0x10

0x04

0x08

0x0c

20 21 22 23

00 02 03

10 12

40

01

31 32

41 42

13

33

43

11

30

Gabriel Laskar (EPITA) CAAL 2015 78 / 378

Memory Endianness Explaination

Integer memory representation
The “endianness” problem is whether to write integers

I in text order: the natural way (for western languages)
I in index order: with digit 0 at address 0

3 2 1 0

2023 22 21
Little endian

0x00

0x10

0x04

0x08

0x0c

2023 22 21

00

10

40

30

03

13

33

43

02

12

32

42

01

31

41

11

0x00

0x10

0x04

0x08

0x0c

20 21 22 23

00 02 03

10 12

40

01

31 32

41 42

13

33

43

11

30

Gabriel Laskar (EPITA) CAAL 2015 78 / 378

Memory Endianness Explaination

Endianness
Do not mix everything!

I Data must be stored and fetched using the same convention.
I Don’t worry about byte order in registers, it does not make sense.

Gabriel Laskar (EPITA) CAAL 2015 79 / 378

Memory Endianness Demo

3: Memory

Memories

Memory accessing modes

Alignment

Endianness
Different designs, different paradigms
Explaination
Demo

Caches

Gabriel Laskar (EPITA) CAAL 2015 80 / 378

Memory Endianness Demo

Endianness Demo

int main(void)
{

unsigned int a = 0x12345678;
hexdump(&a);

}

Gabriel Laskar (EPITA) CAAL 2015 81 / 378

Memory Caches

3: Memory

Memories

Memory accessing modes

Alignment

Endianness

Caches

Gabriel Laskar (EPITA) CAAL 2015 82 / 378

Memory Caches

Cache memory: reason

I Once upon a time, CPU and memory speed were the same.
I Of course, they evolved:

I Moore’s law: CPU power doubles every 2 years,
I Memory speed: +7% every year.

Gabriel Laskar (EPITA) CAAL 2015 83 / 378

Memory Caches

Cache memory: definition

Cache memory is:
I a local copy of central memory,
I transparent, on-demand,
I volatile (may be flushed anytime),
I faster, closer to CPU than central memory,
I expensive!

Gabriel Laskar (EPITA) CAAL 2015 84 / 378

Memory Caches

Cache memory
Hierarchy

L1

Data

CPU

L1

Data

CPU

Die−Shared L3

Ins + Data + TLB

CPU−Shared L2

Ins + Data

Instr.

L1L1

Instr.

CPU−Shared L2

Ins + Data

I There are multiple caches “levels”
I with different size,
I with different speed,
I with different latency.

I Caches may be shared between code and data.
Gabriel Laskar (EPITA) CAAL 2015 85 / 378

Memory Caches

Cache memories side-effects

Caches may also involve stangeness:
I having copies of memory introduce a coherence problem,
I an access to a given memory location may vary,

There are various memory operators:
Programmer that you handle in C code,
Assembler that the compiler generated,

CPU that the CPU does,
In-cache that the cache does in the system.

Gabriel Laskar (EPITA) CAAL 2015 86 / 378

Memory mapping

Part IV

Memory mapping

Gabriel Laskar (EPITA) CAAL 2015 87 / 378

Memory mapping Address space

4: Memory mapping

Address space
Definition
Translation

Computer address spaces

Computer address space translation

MMU patterns

Gabriel Laskar (EPITA) CAAL 2015 88 / 378

Memory mapping Address space Definition

4: Memory mapping

Address space
Definition
Translation

Computer address spaces

Computer address space translation

MMU patterns

Gabriel Laskar (EPITA) CAAL 2015 89 / 378

Memory mapping Address space Definition

Address space
Definition

An address space is a set of discrete values targetting a set of objects.
I Each address points to one object
I One given object may be pointed by more than one address

1

2

3

foo

bar

baz

Gabriel Laskar (EPITA) CAAL 2015 90 / 378

Memory mapping Address space Translation

4: Memory mapping

Address space
Definition
Translation

Computer address spaces

Computer address space translation

MMU patterns

Gabriel Laskar (EPITA) CAAL 2015 91 / 378

Memory mapping Address space Translation

Address space translation

Address space translation creates a new address space where each source
address is mapped to a destination address.
A given object can then be targetted by either addresses.

a

b

c

1

2

3

foo

bar

baz

Gabriel Laskar (EPITA) CAAL 2015 92 / 378

Memory mapping Computer address spaces

4: Memory mapping

Address space

Computer address spaces
Definition
Usual address spaces

Computer address space translation

MMU patterns

Gabriel Laskar (EPITA) CAAL 2015 93 / 378

Memory mapping Computer address spaces Definition

4: Memory mapping

Address space

Computer address spaces
Definition
Usual address spaces

Computer address space translation

MMU patterns

Gabriel Laskar (EPITA) CAAL 2015 94 / 378

Memory mapping Computer address spaces Definition

Memory address space
Definition

A memory address space
I is contiguous
I can be mapped to another target address space (through address

space translation)
All memory accesses are done with respect to an address space.

Gabriel Laskar (EPITA) CAAL 2015 95 / 378

Memory mapping Computer address spaces Usual address spaces

4: Memory mapping

Address space

Computer address spaces
Definition
Usual address spaces

Computer address space translation

MMU patterns

Gabriel Laskar (EPITA) CAAL 2015 96 / 378

Memory mapping Computer address spaces Usual address spaces

Computer address spaces

CPU Address space available through a CPU register. Current machines
have 32 or 64 bit pointer registers

Physical Address space actually wired between hardware components. Current
machines have physical address spaces around 40 bits.

Virtual Address space reachable by a process. Generally 32 or 64 bits.

Gabriel Laskar (EPITA) CAAL 2015 97 / 378

Memory mapping Computer address spaces Usual address spaces

Physical memory

Physical memory provides the lowest accessible address space in computer.
Physical RAM is usually accessible as a small memory subset of the
physical address space.
Physical memory can be mapped in different ways depending on physical
address bus implementation:

I Accessible at a given location,
I Scattered at multiple locations,
I Accessible (many times) at multiple locations.

Gabriel Laskar (EPITA) CAAL 2015 98 / 378

Memory mapping Computer address space translation

4: Memory mapping

Address space

Computer address spaces

Computer address space translation
Segmentation
Pagination

MMU patterns

Gabriel Laskar (EPITA) CAAL 2015 99 / 378

Memory mapping Computer address space translation Segmentation

4: Memory mapping

Address space

Computer address spaces

Computer address space translation
Segmentation
Pagination

MMU patterns

Gabriel Laskar (EPITA) CAAL 2015 100 / 378

Memory mapping Computer address space translation Segmentation

Memory segments

Memory segments define an address space as a sub-region of another
address space. It is mostly defined by the following attributes

I Segment base address in target address space,
I Segment size,
I Segment type and access rights.

Gabriel Laskar (EPITA) CAAL 2015 101 / 378

Memory mapping Computer address space translation Segmentation

Simple segment

Segmentation keeps memory locations contiguous.

0

0

Source address space

Destination address space

Gabriel Laskar (EPITA) CAAL 2015 102 / 378

Memory mapping Computer address space translation Segmentation

Physical address space

Physical address space

Physical memory

0

0

Gabriel Laskar (EPITA) CAAL 2015 103 / 378

Memory mapping Computer address space translation Segmentation

Single mapped RAM

addr[x<n] = mem[x]

Physical address space

Physical memory

0

0

Gabriel Laskar (EPITA) CAAL 2015 104 / 378

Memory mapping Computer address space translation Segmentation

Single mapped RAM

addr[x>=n] = ?

n

?

Physical address space

Physical memory

0

0

Gabriel Laskar (EPITA) CAAL 2015 104 / 378

Memory mapping Computer address space translation Segmentation

Multiple/loop mapped RAM

addr[x] = mem[x%n]

Physical address space

Physical memory

0

0

Gabriel Laskar (EPITA) CAAL 2015 105 / 378

Memory mapping Computer address space translation Segmentation

Memory access using segments

To access memory through a defined segment, the CPU performs the
following tasks:

I Check requested address against the segment size,
I Add the segment base address to the requested memory address,
I Check access rights.

Gabriel Laskar (EPITA) CAAL 2015 106 / 378

Memory mapping Computer address space translation Segmentation

Memory access using segments
Memory access

0

0

Segment base
address

Access
offset

Effective address

Target address
space

Process address
space

Gabriel Laskar (EPITA) CAAL 2015 107 / 378

Memory mapping Computer address space translation Segmentation

Segment descriptor table

0

0

address
space

Target

Segment 2

Segment 3

Segment 0

sizebase

CPU

Register

1

0

0

6

9

3

3

− −

0 12

Gabriel Laskar (EPITA) CAAL 2015 108 / 378

Memory mapping Computer address space translation Segmentation

Limitations of segmentation

Segmentation is a great thing, but is has a few limitations:
I Address-space must be mapped in contiguous blocks
I Thus segments are difficult to grow on-demand
I A whole segment must be present in the target address space

Gabriel Laskar (EPITA) CAAL 2015 109 / 378

Memory mapping Computer address space translation Pagination

4: Memory mapping

Address space

Computer address spaces

Computer address space translation
Segmentation
Pagination

MMU patterns

Gabriel Laskar (EPITA) CAAL 2015 110 / 378

Memory mapping Computer address space translation Pagination

Memory pages
Modern operating systems need more than segmentation.
Basic idea is to split the source address space in pages, and map each
source page to a target page.

address
space

Target

address
space

Source

0

0

Gabriel Laskar (EPITA) CAAL 2015 111 / 378

Memory mapping Computer address space translation Pagination

Pages mapping

Memory pages need to be mapped using a specific descriptor table
recognized by the CPU. Usual attributes for a page are

I address in target address space,
I type and access rights,
I page size,
I other attributes (cacheability, coherence, ...)

Gabriel Laskar (EPITA) CAAL 2015 112 / 378

Memory mapping Computer address space translation Pagination

Pages descriptor table

address
space

Target

address
space

Source

0

0

CPU

Register

−

5

3

6

10

−

−

−

4

1

Gabriel Laskar (EPITA) CAAL 2015 113 / 378

Memory mapping Computer address space translation Pagination

Pages mapping
Rationale

Splitting memory in pages allows more powerful memory management:
I Address spaces may be mapped to uncontiguous target pages,

allowing memory fragmentation.
I Many interesting operations can be performed on pages (sharing,

swapping, ...)

Gabriel Laskar (EPITA) CAAL 2015 114 / 378

Memory mapping MMU patterns

4: Memory mapping

Address space

Computer address spaces

Computer address space translation

MMU patterns
Memory protection
Privileges
Process switching
Memory sharing
Copy On Write
Page swapping
mmap()

Gabriel Laskar (EPITA) CAAL 2015 115 / 378

Memory mapping MMU patterns Memory protection

4: Memory mapping

Address space

Computer address spaces

Computer address space translation

MMU patterns
Memory protection
Privileges
Process switching
Memory sharing
Copy On Write
Page swapping
mmap()

Gabriel Laskar (EPITA) CAAL 2015 116 / 378

Memory mapping MMU patterns Memory protection

Memory protection
Motivations

Why do we need memory protection?

Gabriel Laskar (EPITA) CAAL 2015 117 / 378

Memory mapping MMU patterns Memory protection

Memory protection

In order to execute secure operating system, hardware has to provide
memory protection systems. This protects

I the system from the hosted processes
I hosted processes from each other

It may even protect the system from its own components in a
Micro-Kernel approach.

Gabriel Laskar (EPITA) CAAL 2015 119 / 378

Memory mapping MMU patterns Memory protection

Memory protection
How?

Several memory access checks are performed by the CPU, for each access,
transparently:

I address bounds validity,
I privilege level,
I operation type.

Gabriel Laskar (EPITA) CAAL 2015 120 / 378

Memory mapping MMU patterns Memory protection

Memory protection
Where?

I In a segmentation-based system, priviliges are per segment.
I In a pagination-based system, privileges are in page descriptor table,

with a page granularity.

x86 mixes both with segmentation on top of pagination.

Gabriel Laskar (EPITA) CAAL 2015 121 / 378

Memory mapping MMU patterns Privileges

4: Memory mapping

Address space

Computer address spaces

Computer address space translation

MMU patterns
Memory protection
Privileges
Process switching
Memory sharing
Copy On Write
Page swapping
mmap()

Gabriel Laskar (EPITA) CAAL 2015 122 / 378

Memory mapping MMU patterns Privileges

Privilege levels
Privilege level keeps memory from being accessed by non-authorized code.
Different CPUs define different privilege levels.

Data
segment/page

level 0

Data
segment/page

level 1

Code
segment/page

level 1

Allowed

memory

access

memory

Illegal

access

Instruction

Target address
space

Gabriel Laskar (EPITA) CAAL 2015 123 / 378

Memory mapping MMU patterns Privileges

Operation type
Operation types checking keeps code from doing unwanted memory
operations.

segment/page
Data

(read)
segment/page

Data

(read/write)
segment/page

Code

(exec)

Target address
space

Instruction

ok

ReadWrite

okok

Read

writeread

Illegal

writeok

Execution Illegal Illegal

Gabriel Laskar (EPITA) CAAL 2015 124 / 378

Memory mapping MMU patterns Process switching

4: Memory mapping

Address space

Computer address spaces

Computer address space translation

MMU patterns
Memory protection
Privileges
Process switching
Memory sharing
Copy On Write
Page swapping
mmap()

Gabriel Laskar (EPITA) CAAL 2015 125 / 378

Memory mapping MMU patterns Process switching

Process switching

Pagination systems are easier to use with a separate memory address space
for each process running on a computer:

I Switching process space implies changing the page descriptor table.
I Each process has its own page descriptor table ready to be used by

the CPU.
I Only the CPU register pointing to this table has to be changed to

setup a new address space.

Gabriel Laskar (EPITA) CAAL 2015 126 / 378

Memory mapping MMU patterns Process switching

Process switching

Process B
address space

Process A
address space

Target address
space

Process B
page table

Process A
page table

CPU register

Gabriel Laskar (EPITA) CAAL 2015 127 / 378

Memory mapping MMU patterns Memory sharing

4: Memory mapping

Address space

Computer address spaces

Computer address space translation

MMU patterns
Memory protection
Privileges
Process switching
Memory sharing
Copy On Write
Page swapping
mmap()

Gabriel Laskar (EPITA) CAAL 2015 128 / 378

Memory mapping MMU patterns Memory sharing

Memory sharing

The memory pagination can be used to share pages between processes.
A single page can be mapped in several process address spaces to permit
different behaviors:

I Save physical memory by not duplicating shared code and read-only
data memory (used for shared libraries),

I Use shared memory for inter-process communication,

Gabriel Laskar (EPITA) CAAL 2015 129 / 378

Memory mapping MMU patterns Memory sharing

Memory sharing

Process A
page table

Process A
address space

Process B
address space

Target address
space

Process B
page table

0 1 2 3 0 1 2

0 1 2 3 4 18........

Gabriel Laskar (EPITA) CAAL 2015 130 / 378

Memory mapping MMU patterns Copy On Write

4: Memory mapping

Address space

Computer address spaces

Computer address space translation

MMU patterns
Memory protection
Privileges
Process switching
Memory sharing
Copy On Write
Page swapping
mmap()

Gabriel Laskar (EPITA) CAAL 2015 131 / 378

Memory mapping MMU patterns Copy On Write

Copy On Write

Copy On Write (COW) is a powerful trick used in many situations.

One of the most usual ones is fork() where the whole address space of a
process has to be cloned.

Basic idea is to make the whole memory read-only and actually copy only
when necessary, as late as possible.

Gabriel Laskar (EPITA) CAAL 2015 132 / 378

Memory mapping MMU patterns Copy On Write

Copy On Write
Step by step

0

0

4

−

10

−

−

−

−

3

6

Gabriel Laskar (EPITA) CAAL 2015 133 / 378

Memory mapping MMU patterns Copy On Write

Copy On Write
Step by step

0

0

4

−

10

−

−

−

−

3

6

Gabriel Laskar (EPITA) CAAL 2015 133 / 378

Memory mapping MMU patterns Copy On Write

Copy On Write
Step by step

0

0

4

−

10

−

−

−

−

3

6

4

−

10

−

−

−

−

3

6

Gabriel Laskar (EPITA) CAAL 2015 133 / 378

Memory mapping MMU patterns Copy On Write

Copy On Write
Step by step

0

0 0

4

−

10

−

−

−

−

3

6

4

−

10

−

−

−

−

3

6

Gabriel Laskar (EPITA) CAAL 2015 133 / 378

Memory mapping MMU patterns Copy On Write

Copy On Write
Step by step

0

0 0

4

−

10

−

−

−

−

3

6

4

−

10

−

−

−

−

3

6

Gabriel Laskar (EPITA) CAAL 2015 133 / 378

Memory mapping MMU patterns Copy On Write

Copy On Write
Step by step

0

0 0

4

−

10

−

−

−

−

3

6

4

−

10

−

−

−

−

3

6

Gabriel Laskar (EPITA) CAAL 2015 133 / 378

Memory mapping MMU patterns Copy On Write

Copy On Write
Step by step

0

0 0

2

−

10

−

−

−

−

3

6

4

−

10

−

−

−

−

3

6

Gabriel Laskar (EPITA) CAAL 2015 133 / 378

Memory mapping MMU patterns Copy On Write

Copy On Write
Step by step

0

0 0

2

−

10

−

−

−

−

3

6

4

−

10

−

−

−

−

3

6

Gabriel Laskar (EPITA) CAAL 2015 133 / 378

Memory mapping MMU patterns Page swapping

4: Memory mapping

Address space

Computer address spaces

Computer address space translation

MMU patterns
Memory protection
Privileges
Process switching
Memory sharing
Copy On Write
Page swapping
mmap()

Gabriel Laskar (EPITA) CAAL 2015 134 / 378

Memory mapping MMU patterns Page swapping

Page swapping

Page swapping is a mechanism artificially enlarging Physical memory with
a part of the hard-disk.

Gabriel Laskar (EPITA) CAAL 2015 135 / 378

Memory mapping MMU patterns Page swapping

Page swapping
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

6

−

5

3

10

−

−

−

4

Gabriel Laskar (EPITA) CAAL 2015 136 / 378

Memory mapping MMU patterns Page swapping

Page swapping
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

6

−

5

3

10

−

−

−

4

Gabriel Laskar (EPITA) CAAL 2015 136 / 378

Memory mapping MMU patterns Page swapping

Page swapping
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

6

−

5

3

10

−

−

−

4

Gabriel Laskar (EPITA) CAAL 2015 136 / 378

Memory mapping MMU patterns Page swapping

Page swapping
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

S: 3

6

−

5

3

10

−

−

−

4

Gabriel Laskar (EPITA) CAAL 2015 136 / 378

Memory mapping MMU patterns Page swapping

Page swapping
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

S: 3

6

−

5

3

10

−

−

−

4

Gabriel Laskar (EPITA) CAAL 2015 136 / 378

Memory mapping MMU patterns Page swapping

Page swapping
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

S: 3

disk

−

5

3

10

−

−

−

4

Gabriel Laskar (EPITA) CAAL 2015 136 / 378

Memory mapping MMU patterns Page swapping

Page swapping
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

S: 3

disk

−

5

3

10

−

−

−

4

Gabriel Laskar (EPITA) CAAL 2015 136 / 378

Memory mapping MMU patterns Page swapping

Page swapping
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

S: 3

disk

−

5

3

10

−

−

−

4

Gabriel Laskar (EPITA) CAAL 2015 136 / 378

Memory mapping MMU patterns Page swapping

Page swapping
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

S: 3

−

5

3

10

−

−

−

4

7

Gabriel Laskar (EPITA) CAAL 2015 136 / 378

Memory mapping MMU patterns Page swapping

Page swapping
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

S: 3

−

5

3

10

−

−

−

4

7

Gabriel Laskar (EPITA) CAAL 2015 136 / 378

Memory mapping MMU patterns mmap()

4: Memory mapping

Address space

Computer address spaces

Computer address space translation

MMU patterns
Memory protection
Privileges
Process switching
Memory sharing
Copy On Write
Page swapping
mmap()

Gabriel Laskar (EPITA) CAAL 2015 137 / 378

Memory mapping MMU patterns mmap()

mmap()

Make part of the memory exactly match the contents of a file.
I Reflect changes immediatly between processes having file opened
I Permit different protections on different parts of the file
I Lazily load parts of file
I Lazily write parts back

Gabriel Laskar (EPITA) CAAL 2015 138 / 378

Memory mapping MMU patterns mmap()

mmap()
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

−

−

−

−

−

5

−

−

3

Gabriel Laskar (EPITA) CAAL 2015 139 / 378

Memory mapping MMU patterns mmap()

mmap()
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

foo.bin

f:0

f:1

f:2

f:3

−

5

−

−

3

Gabriel Laskar (EPITA) CAAL 2015 139 / 378

Memory mapping MMU patterns mmap()

mmap()
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

foo.bin

f:0

f:1

f:2

f:3

−

5

−

−

3

Gabriel Laskar (EPITA) CAAL 2015 139 / 378

Memory mapping MMU patterns mmap()

mmap()
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

foo.bin

f:0

f:1

f:2

f:3

fo
o

.b
in

:3

−

5

−

−

3

Gabriel Laskar (EPITA) CAAL 2015 139 / 378

Memory mapping MMU patterns mmap()

mmap()
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

foo.bin

f:0

f:1

f:2

8

−

5

−

−

3

Gabriel Laskar (EPITA) CAAL 2015 139 / 378

Memory mapping MMU patterns mmap()

mmap()
Step by step

address
space

Source

address
space

Target

Disk

0

0

CPU

Register

1

foo.bin

f:0

f:1

f:2

8

−

5

−

−

3

Gabriel Laskar (EPITA) CAAL 2015 139 / 378

Execution flow

Part V

Execution flow

Gabriel Laskar (EPITA) CAAL 2015 140 / 378

Execution flow Branch, function calls

5: Execution flow

Branch, function calls
Branch principle
Pipeline considerations

Function calls

Handling events

Multitasking

Gabriel Laskar (EPITA) CAAL 2015 141 / 378

Execution flow Branch, function calls Branch principle

5: Execution flow

Branch, function calls
Branch principle
Pipeline considerations

Function calls

Handling events

Multitasking

Gabriel Laskar (EPITA) CAAL 2015 142 / 378

Execution flow Branch, function calls Branch principle

Branch principle

Branching is breaking the normal incremental execution flow to go execute
code somewhere else.
A branch has

I a destination,
I optionally a condition,
I optionally a “link” feature, saving return point.

Gabriel Laskar (EPITA) CAAL 2015 143 / 378

Execution flow Branch, function calls Branch principle

Branch offset

Instructions are fetched from memory to CPU by dereferencing the
program counter (%pc register)

I in normal execution flow, the %pc is auto-incremented

%pc

80450020

8045001C

80450018

80450014

80450010

Addresses Instructions

add %g1, %g2, %g3

mov %g0, %g1

xor %g2, %g3, %g2

sub %g3, %g2, %g1

...

Next instruction

Executed instruction

I when a branch occurs, the %pc is affected in two possible ways:
relative branch: a constant offset is added to the %pc
absolute branch: an absolute address is loaded into the %pc

Gabriel Laskar (EPITA) CAAL 2015 144 / 378

Execution flow Branch, function calls Branch principle

Unconditional branch

The %pc register is always modified.
I Explicit jump: goto
I Explicit infinite loop, optimized by the compiler

%pc

80450120

8045011C

80450118

80450014

80450010

Addresses Instructions

b 8045011C

mov %g0, %g1

xor %g2, %g3, %g2

sub %g3, %g2, %g1

...

Next instruction

Executed instruction

Gabriel Laskar (EPITA) CAAL 2015 145 / 378

Execution flow Branch, function calls Branch principle

Unconditional branch
C listing

#include <stdio.h>

void main(void)
{

do {
puts("hello");

} while (1);
}

Gabriel Laskar (EPITA) CAAL 2015 146 / 378

Execution flow Branch, function calls Branch principle

Unconditional branch
Control flow graph

return

main

puts("hello");

Gabriel Laskar (EPITA) CAAL 2015 147 / 378

Execution flow Branch, function calls Branch principle

Conditional branch

The %pc register is modified only if the condition is verified
I if statements
I loop (for, while) statements

80450010

Addresses

80450014

80450118

8045011C

bz 8045011C

mov %g0, %g1

xor %g2, %g3, %g2

sub %g3, %g2, %g1

Instructions

Executed instruction

Potential next instruction

80450120 ...

%pc

Potential next instruction

80450018 ...

Gabriel Laskar (EPITA) CAAL 2015 148 / 378

Execution flow Branch, function calls Branch principle

Conditional branch
C listing

#include <stdio.h>

void main(void)
{

int i = 10;

do {
printf("%i\n", --i);

} while (i != 0);
}

Gabriel Laskar (EPITA) CAAL 2015 149 / 378

Execution flow Branch, function calls Branch principle

Conditional branch
Control flow graph

yes

no

main

i = 10

printf("%i\n");

i != 0

−−i

return
Gabriel Laskar (EPITA) CAAL 2015 150 / 378

Execution flow Branch, function calls Branch principle

Conditions

The decision to take the branch is based on register contents:
I conditional branch may occur if a specific bit is set in a register
I conditional branch may occur if a specific bit is clear in a register
I conditional branch may occur if a register equals a specific value

(usually zero)

Gabriel Laskar (EPITA) CAAL 2015 151 / 378

Execution flow Branch, function calls Branch principle

Complete examples

1. strlen
2. pgcd

Gabriel Laskar (EPITA) CAAL 2015 152 / 378

Execution flow Branch, function calls Pipeline considerations

5: Execution flow

Branch, function calls
Branch principle
Pipeline considerations

Function calls

Handling events

Multitasking

Gabriel Laskar (EPITA) CAAL 2015 153 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations

A branch may break the pipeline, slowing the execution
1. when things goes wrong, a bubble is created
2. sometimes, the processor succeeds in predicting the branch target
3. when a misprediction occurs, a bubble is created

Gabriel Laskar (EPITA) CAAL 2015 154 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Bubble

When a branch occurs, the processor may flush the stages of the pipeline
that contains useless instructions:

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Fetch?

Gabriel Laskar (EPITA) CAAL 2015 155 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Bubble

When a branch occurs, the processor may flush the stages of the pipeline
that contains useless instructions:

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Decod

Fetch?

Fetch

Gabriel Laskar (EPITA) CAAL 2015 155 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Bubble

When a branch occurs, the processor may flush the stages of the pipeline
that contains useless instructions:

not

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Fetch

Decod

Exec

?

Decod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 155 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Bubble

When a branch occurs, the processor may flush the stages of the pipeline
that contains useless instructions:

add

not

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

Decod

Fetch

Mem

?

Fetch

Decod

ExecDecod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 155 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Bubble

When a branch occurs, the processor may flush the stages of the pipeline
that contains useless instructions:

jmp

add

not

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

Decod

Fetch

Mem

Write

?

!

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 155 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Bubble

When a branch occurs, the processor may flush the stages of the pipeline
that contains useless instructions:

−−

jmp

add

not

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

−−

Fetch

Mem

Write

?

Exec

Decod

Fetch

Mem

Write

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 155 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Bubble

When a branch occurs, the processor may flush the stages of the pipeline
that contains useless instructions:

add

−−

jmp

add

not

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Fetch

Decod

−−

Write

Mem

?

Exec

−−

Fetch

Mem

Write

Exec

Decod

Fetch

Mem

Write

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 155 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Delay slot

A delay slot is a processor feature. It’s a convention saying the instruction
following branches is always executed.
Branch is delayed.

Exec

Decod

Fetch

Mem

Write

?

jmp

add

not

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 156 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Delay slot

A delay slot is a processor feature. It’s a convention saying the instruction
following branches is always executed.
Branch is delayed.

Exec

Decod

Fetch

Mem

Write

?

jmp

add

not

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

jmp is executed
instruction following

execution flow
is modified one cycle later

Gabriel Laskar (EPITA) CAAL 2015 156 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Delay slot

A delay slot is a processor feature. It’s a convention saying the instruction
following branches is always executed.
Branch is delayed.

sub

Exec

Decod

Fetch

Mem

Write

?

Exec

Decod

Fetch

Mem

Write

jmp

add

not

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

jmp is executed
instruction following

execution flow
is modified one cycle later

Gabriel Laskar (EPITA) CAAL 2015 156 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Delay slot

A delay slot is a processor feature. It’s a convention saying the instruction
following branches is always executed.
Branch is delayed.

sub

Fetch

Decod

Exec

Write

Mem

?

Exec

Decod

Fetch

Mem

Write

Exec

Decod

Fetch

Mem

Write

add

jmp

add

not

sub

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

jmp is executed
instruction following

execution flow
is modified one cycle later

Gabriel Laskar (EPITA) CAAL 2015 156 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Loads (digression)

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Fetch?

Gabriel Laskar (EPITA) CAAL 2015 157 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Loads (digression)

sub g1, g2, g3

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Decod

Fetch?

Fetch

Gabriel Laskar (EPITA) CAAL 2015 157 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Loads (digression)

ld g5, [g2]

sub g1, g2, g3

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Fetch

Decod

Exec

?

Decod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 157 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Loads (digression)

add g6, 0x2a, g5

ld g5, [g2]

sub g1, g2, g3

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

Decod

Fetch

Mem

!

?

Fetch

Decod

ExecDecod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 157 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Loads (digression)

add g6, 0x2a, g5

ld g5, [g2]

sub g1, g2, g3

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Decod

Fetch

Mem

Write

Exec
!

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 157 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Loads (digression)

add g6, 0x2a, g5

ld g5, [g2]

sub g1, g2, g3

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Decod

Fetch

Mem

Write

Exec
!

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 157 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Loads (digression)

add g6, 0x2a, g5

ld g5, [g2]

sub g1, g2, g3

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Decod

Fetch

Mem

Write

Exec
!

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

add g6, 0x2a, g5

Gabriel Laskar (EPITA) CAAL 2015 157 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Loads (digression)

ld i3, [g6 + 0x8]

add g6, 0x2a, g5

ld g5, [g2]

sub g1, g2, g3

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

Decod

Fetch

−−

Write

?

(Exec)

(Decod)

(Fetch)

Mem

Write

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

add g6, 0x2a, g5

Gabriel Laskar (EPITA) CAAL 2015 157 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Loads (digression)

ld i3, [g6 + 0x8]

add g6, 0x2a, g5

ld g5, [g2]

sub g1, g2, g3

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

Decod

Fetch

−−

Write

?

(Exec)

(Decod)

(Fetch)

Mem

Write

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

add g6, 0x2a, g5

Gabriel Laskar (EPITA) CAAL 2015 157 / 378

Execution flow Branch, function calls Pipeline considerations

Pipeline considerations
Loads (digression)

xor i4, 0x2a, i3

ld i3, [g6 + 0x8]

add g6, 0x2a, g5

ld g5, [g2]

sub g1, g2, g3

Pipeline timeline

In
st

ru
ct

io
n

 s
eq

u
en

ce

Exec

Decod

Fetch

Mem

−−

?

Exec

Decod

Fetch

−−

Write

(Exec)

(Decod)

(Fetch)

Mem

Write

Exec

Decod

Fetch

Mem

Fetch

Decod

ExecDecod

Fetch

Fetch

Gabriel Laskar (EPITA) CAAL 2015 157 / 378

Execution flow Function calls

5: Execution flow

Branch, function calls

Function calls
Principles
Argument passing
Call conventions

Handling events

Multitasking

Gabriel Laskar (EPITA) CAAL 2015 158 / 378

Execution flow Function calls Principles

5: Execution flow

Branch, function calls

Function calls
Principles
Argument passing
Call conventions

Handling events

Multitasking

Gabriel Laskar (EPITA) CAAL 2015 159 / 378

Execution flow Function calls Principles

Function calls principle
A function is a piece of code that returns a value depending on the
parameters the user specifies as inputs, if any.

8004500

8004504

8004508

800450B

8002000

8002004

8002008

Addresses AddressesInstructions Instructions

Gabriel Laskar (EPITA) CAAL 2015 160 / 378

Execution flow Function calls Principles

“call” instruction

I Saves next instruction address (the return path),
I Jumps to function

80002000

80002004

80450018

80450014

80450010
80450018

%i7

Return address

%pc add %g1, %g2, %g3

...

xor %g2, %g1, %g3

mov %g0, %g1

call 80002000

Addresses Instructions

Delay slot instruction

Executed instruction

Next instruction

Gabriel Laskar (EPITA) CAAL 2015 161 / 378

Execution flow Function calls Principles

“ret” instruction

I Stores the result in a dedicated register
I Restores the previously-saved PC address

Return address

%i7

80450018

%pc 80450018

80450014

80450010

80002100

800020FC

800020F8

Addresses Instructions

ret

not %g1, %g2

...

Executed instruction

Delay slot instruction

call 80002000

mov %g0, %g1

xor %g2, %g1, %g3 Next instruction

Gabriel Laskar (EPITA) CAAL 2015 162 / 378

Execution flow Function calls Argument passing

5: Execution flow

Branch, function calls

Function calls
Principles
Argument passing
Call conventions

Handling events

Multitasking

Gabriel Laskar (EPITA) CAAL 2015 163 / 378

Execution flow Function calls Argument passing

How to pass arguments and return values?

We need a space of shared data between the caller and the callee.
I From caller to callee, for arguments
I From callee to caller, for return values

Some arguments are purely for execution purposes:
I context pointers (stack, globals, ...)
I return address

Gabriel Laskar (EPITA) CAAL 2015 164 / 378

Execution flow Function calls Argument passing

Simplest case

I Non-nested function call
I Less arguments than available machine registers

Gabriel Laskar (EPITA) CAAL 2015 165 / 378

Execution flow Function calls Argument passing

Through registers

On most RISC architectures, there are registers dedicated to argument
storage:

I Each argument is stored and preserved directly in a register
I Local variables may be held in another set of registers

Example: on SPARC architecture, the CPU has:
I 8 registers (%g0, ... %g7) dedicated to global variables
I 8 registers (%i0, ... %i7) dedicated to input arguments
I 8 registers (%l0, ... %l7) dedicated to local variables
I 8 registers (%o0, ... %o7) dedicated to output arguments

A callee’s “input” registers are shared with caller’s “output” registers.

Gabriel Laskar (EPITA) CAAL 2015 166 / 378

Execution flow Function calls Argument passing

Through global memory

Principle:
I Each argument is stored and preserved directly in memory
I Each local variable is held in memory

Gabriel Laskar (EPITA) CAAL 2015 167 / 378

Execution flow Function calls Call conventions

5: Execution flow

Branch, function calls

Function calls
Principles
Argument passing
Call conventions

Handling events

Multitasking

Gabriel Laskar (EPITA) CAAL 2015 168 / 378

Execution flow Function calls Call conventions

Call conventions

I How to deal with huge amount of variables and arguments?
I How to deal with recursive calls and nested function calls?
I How to deal with variables bigger than registers?
I How to deal with “...” (like printf)?
I How to deal with dedicated registers (floats)?

Gabriel Laskar (EPITA) CAAL 2015 169 / 378

Execution flow Function calls Call conventions

Problem

Consider a recursive function that needs local variables:
I Each time the function is called, a new context must be allocated to

preserve each local variable
I Each time the function returns, the previous context must be restored
I The function may call itself an unpredictable number of times
I These local variables cannot be reserved in a static memory space (as

global variables are).

Gabriel Laskar (EPITA) CAAL 2015 170 / 378

Execution flow Function calls Call conventions

Abstract context stack

Local

context

Local

context

Local

context

calls

Function

returns

Function

void foo(int a)

{

 return foo(a + 1);

}

Gabriel Laskar (EPITA) CAAL 2015 171 / 378

Execution flow Function calls Call conventions

Register window

Hardware context stack implementation:
I Uses a large amount of registers (example: 512 on Sparc)
I Uses a logical limitation to define multiple contexts
I Does context change by sliding a window on each function call

Gabriel Laskar (EPITA) CAAL 2015 172 / 378

Execution flow Function calls Call conventions

Principle

%i0 − %i7

%l0 − %l7

%o0 − %o7

Sliding register window
Hardware registers

%R95

%R96

%R98

%R97

%R99

%R100

%R101

%R102

%R115

%R116

%R117

%R118

%R119

%R120

Previous

Current

Next

Abstract stack layout

Local

context

Local

context

Local

context

calls

Function

returns

Function

Gabriel Laskar (EPITA) CAAL 2015 173 / 378

Execution flow Function calls Call conventions

Sparc overlapping register window

register
window

Input registers

%i0 ... %i7

Local registers

%l0 ... %l7

Output registers

%o0 ... %o7

register
window

Calling fonctions context

Called fonctions context

Register
overlap

Function call

%l0 ... %l7

Local registers

Input registers

%i0 ... %i7

Output registers

%o0 ... %o7

Gabriel Laskar (EPITA) CAAL 2015 174 / 378

Execution flow Function calls Call conventions

Function prologue and epilogue

prologue: slide register window
Example:

save %sp, -96, %sp

epilogue: slide back register window (i.e. restore previous context).
Example:

restore

Gabriel Laskar (EPITA) CAAL 2015 175 / 378

Execution flow Function calls Call conventions

Memory stack

Register window has hard limitations:
I The call depth is limited to the total amount of registers
I The CPU needs a large amount of physical registers ⇒ expensive

On most systems, memory is used to implement a cheaper stack.

Gabriel Laskar (EPITA) CAAL 2015 176 / 378

Execution flow Function calls Call conventions

Principle

Stack

memory

space

frame

stack

Current
variables

Local

arguments

Called function

Return address

arguments
Input

Frame

pointer

pointer

Stack

Sliding stack frame Process memory

Previous

Current

Next

Abstract stack layout

Local

context

Local

context

Local

context

calls

Function

returns

Function

Gabriel Laskar (EPITA) CAAL 2015 177 / 378

Execution flow Function calls Call conventions

Nested function calls

Local variables

Stack memory space

Called function
arguments

Return address

Input
arguments

Return address

Local variables

Called function
arguments

Input
arguments

Return address

Local variables

Current
function
context

Stack
pointer

Frame
pointer

Function
calls

Gabriel Laskar (EPITA) CAAL 2015 178 / 378

Execution flow Function calls Call conventions

Function prologue and epilogue

prologue: saves previous frame pointer, set new frame pointer, reserve
space on memory stack for local variables
Example: a function that needs three 32 bits local variables
(12 bytes) on its stack:

[%sp] <- %fp
%fp <- %sp
%sp <- %sp - 12

epilogue: restores previous frame and stack pointers (i.e. restore
previous context).
Example:

%sp <- %fp
%fp <- [%fp]

Gabriel Laskar (EPITA) CAAL 2015 179 / 378

Execution flow Function calls Call conventions

Argument and local variable access

argument:
Dereference the address “frame pointer + argument offset”:

ld [%fp + 16], %g1; Access to arg_a

local variable:
Dereference the address “frame pointer - local variable
offset”

ld [%fp - 4], %g1; Access to var_b

Gabriel Laskar (EPITA) CAAL 2015 180 / 378

Execution flow Function calls Call conventions

Argument and local variable access
schema

previous fp

ret address

local
variables

function
arguments

Stack
pointer

Frame
pointer

void foo(int arg_a,

 int arg_b)

{

 int var_a, var_, var_c;

...

}

int var_c

int var_b

int var_a

previous fp

int arg_b

int arg_a

ret address

Gabriel Laskar (EPITA) CAAL 2015 181 / 378

Execution flow Handling events

5: Execution flow

Branch, function calls

Function calls

Handling events
Events
System calls
Faults
Hardware interruptions

Multitasking

Gabriel Laskar (EPITA) CAAL 2015 182 / 378

Execution flow Handling events Events

5: Execution flow

Branch, function calls

Function calls

Handling events
Events
System calls
Faults
Hardware interruptions

Multitasking

Gabriel Laskar (EPITA) CAAL 2015 183 / 378

Execution flow Handling events Events

Events

What are events?

How to handle them?

Gabriel Laskar (EPITA) CAAL 2015 184 / 378

Execution flow Handling events Events

Categorizing events

An interrupt is caused by an external event.
An exception is caused by instruction execution.

Unplanned Deliberate
Synchronous fault syscall trap,

software interrupt
Asynchronous hardware

interruption

→ An incoming event must be executed with a high priority.

Gabriel Laskar (EPITA) CAAL 2015 185 / 378

Execution flow Handling events Events

User space / kernel space
A trap is a critical event that must be handled by the kernel in a safe
memory space, the kernel space.

Kernel mode

Usr.stack

User data

User code

stack

Kernel

code

Kernel

Kernel

space
memory

Process
memory
space

User mode

Invalid

User code

User data

Usr.stack

Gabriel Laskar (EPITA) CAAL 2015 186 / 378

Execution flow Handling events Events

Trap handler table
The processor jumps to a trap routine defined by the operating system.
The trap routine address is stored in a dedicated descriptor table.

Interruption
table

address
register

Kernel mode

Usr.stack

User data

User code

code

Kernel

data

Kernel

trap #4

Interruption table

Gabriel Laskar (EPITA) CAAL 2015 187 / 378

Execution flow Handling events System calls

5: Execution flow

Branch, function calls

Function calls

Handling events
Events
System calls
Faults
Hardware interruptions

Multitasking

Gabriel Laskar (EPITA) CAAL 2015 188 / 378

Execution flow Handling events System calls

System calls

The system call mechanism can be used by a process to request services
from the operating system:

I executing a process, exiting
I reading input, writing output (read, write...)
I performing restricted actions such as accessing hardware devices or

accessing the memory management unit.
I etc, ...

Gabriel Laskar (EPITA) CAAL 2015 189 / 378

Execution flow Handling events System calls

Processor modes

Hardware facilities have been implemented to ensure process isolation in
multi-user/multi-processor environment.
Today, processors have two (or more) execution modes:
user mode

dedicated to user applications
supervisor mode

reserved for operating system kernel

Gabriel Laskar (EPITA) CAAL 2015 190 / 378

Execution flow Handling events System calls

Execution permissions

For security sake, some operations are restricted to kernel space:
I peripheral input and output
I low-level memory management

System calls allow user to switch to kernel space and perform restricted
actions, under certain conditions.
The kernel must check system call parameters validity.

Gabriel Laskar (EPITA) CAAL 2015 191 / 378

Execution flow Handling events System calls

System call implementation

1. System calls use a dedicated instruction which causes the processor to
change mode to superuser (or protected) mode.

2. Each system call is indexed by a single number: the syscall trap
handler makes an indirect call through the system call dispatch table
to the handler for the specific system call.

Gabriel Laskar (EPITA) CAAL 2015 192 / 378

Execution flow Handling events System calls

Execution path
System calls run in kernel mode on the kernel memory space.

system
return

context
switch

context
switch

Kernel

code

User

codesystem
call

User

code

User mode Kernel mode

Gabriel Laskar (EPITA) CAAL 2015 193 / 378

Execution flow Handling events System calls

libc example

Standart C library’s read, write, pipe, ... functions are wrappers to
corresponding system calls:

_SYSENTRY(pipe)
mov %o0, %o2
mov SYS_pipe, %g1
ta %xcc, ST_SYSCALL
bcc,a,pt %xcc, 1f
stw %o0, [%o2]
ERROR()
1: stw %o1, [%o2 + 4]
retl
clr %o0
_SYSEND(pipe)

Gabriel Laskar (EPITA) CAAL 2015 194 / 378

Execution flow Handling events Faults

5: Execution flow

Branch, function calls

Function calls

Handling events
Events
System calls
Faults
Hardware interruptions

Multitasking

Gabriel Laskar (EPITA) CAAL 2015 195 / 378

Execution flow Handling events Faults

Faults

How to handle divide by zero?
How to handle overflow?

How to handle ...

Gabriel Laskar (EPITA) CAAL 2015 196 / 378

Execution flow Handling events Faults

Similarities with system calls

Faults are similar to system calls in some respects:
I Faults occur as a result of a process executing an instruction
I The kernel exception handler may return to the faulty user context

But faults are different in other respects:
I Syscalls are deliberate, faults are unexpected
I Not every execution of the instruction results in a fault

Gabriel Laskar (EPITA) CAAL 2015 197 / 378

Execution flow Handling events Faults

Handling a fault

Different actions may be taken by the operating system in response to
faults:

I kill the user process
I notify the process that a fault occurred (so it may recover in its own

way)
I solve the problem and resume the process transparently

Gabriel Laskar (EPITA) CAAL 2015 198 / 378

Execution flow Handling events Faults

Execution path

Instruction
fault

context
save

process
exit

User

code

context
restore

User

code

Kernel

code

User mode Kernel mode

Gabriel Laskar (EPITA) CAAL 2015 199 / 378

Execution flow Handling events Faults

Events interface

Unix systems can notify a user program of a fault with a signal.
Signals are also used for other forms of asynchronous event notifications.

Gabriel Laskar (EPITA) CAAL 2015 200 / 378

Execution flow Handling events Hardware interruptions

5: Execution flow

Branch, function calls

Function calls

Handling events
Events
System calls
Faults
Hardware interruptions

Multitasking

Gabriel Laskar (EPITA) CAAL 2015 201 / 378

Execution flow Handling events Hardware interruptions

Hardware interruptions

How to handle devices interruptions?

Gabriel Laskar (EPITA) CAAL 2015 202 / 378

Execution flow Handling events Hardware interruptions

Execution path

context
load

context
save

User

code

Kernel

code

User

code

interruption
return

hardware
interruption

User mode Kernel mode

Gabriel Laskar (EPITA) CAAL 2015 203 / 378

Execution flow Multitasking

5: Execution flow

Branch, function calls

Function calls

Handling events

Multitasking

Gabriel Laskar (EPITA) CAAL 2015 204 / 378

Execution flow Multitasking

Multitasking

A single process may not use system resources at full capacity.
The idea of multitasking is to simulate the execution of concurrent
execution of many processes, using a single processor.
The operating system has to:

I create and delete processes,
I organize processes in memory,
I schedule processes for CPU use.

Gabriel Laskar (EPITA) CAAL 2015 205 / 378

Execution flow Multitasking

Memory mapping

Pysical memory
space

B process addressing
space

A process addressing
space

A process
memory map

B process
memory map

Page table
address register

Gabriel Laskar (EPITA) CAAL 2015 206 / 378

Execution flow Multitasking

Context switching

B

process

registers

A

process

registers

Real

CPU

registers

Memory

contexts

backup

Reg 1

Reg 2

FlagReg

PageReg

Gabriel Laskar (EPITA) CAAL 2015 207 / 378

Execution flow Multitasking

Process life

Kernel

Process A Process B Process C

context savecontext load

Timer

interruption

This approach requires a way of handling events.
Gabriel Laskar (EPITA) CAAL 2015 208 / 378

Object file formats

Part VI

Object file formats

Gabriel Laskar (EPITA) CAAL 2015 209 / 378

Object file formats Build process

6: Object file formats

Build process
Overview
Development tools
Analysis tools

Binary formats

Executable code loading

Gabriel Laskar (EPITA) CAAL 2015 210 / 378

Object file formats Build process Overview

6: Object file formats

Build process
Overview
Development tools
Analysis tools

Binary formats

Executable code loading

Gabriel Laskar (EPITA) CAAL 2015 211 / 378

Object file formats Build process Overview

The big picture

ld

C source
code

pure C
code

Assembly
code

Object
file

ascc1cpp

.o

.o

.o.s.i.c

.h

a.out

Header files

Gabriel Laskar (EPITA) CAAL 2015 212 / 378

Object file formats Build process Overview

Preprocessor

cpp as ld

C source

code

Pure C

code

Assembly

code file

Object

cc1

Executable

Header

files

.i .s .o.c

I Also called macro-processor
I Transforms a text (source) file into another text (source) file:

I merges many files into one (#include)
I replaces macros by their definitions (#define)
I removes code considering conditions (#if*)

Example: cpp
I Input: C source file with directives
I Output: “pure” C source file

Gabriel Laskar (EPITA) CAAL 2015 213 / 378

Object file formats Build process Overview

C compiler

cpp as ld

C source

code

Pure C

code

Assembly

code file

Object

cc1

Executable

Header

files

.i .s .o.c

I Scans and parses the source file
I Analyzes the source (type checking)
I Generates assembly code (another source file) for the target

architecture

Gabriel Laskar (EPITA) CAAL 2015 214 / 378

Object file formats Build process Overview

Assembler

cpp as ld

C source

code

Pure C

code

Assembly

code file

Object

cc1

Executable

Header

files

.i .s .o.c

I Translates instructions in binary opcode sequence for the target
architecture

I Collects symbols and resolve label addresses
I Writes an object file

The assembler source file will be different depending on architecture!

Gabriel Laskar (EPITA) CAAL 2015 215 / 378

Object file formats Build process Overview

Linker

cpp as ld

C source

code

Pure C

code

Assembly

code file

Object

cc1

Executable

Header

files

.i .s .o.c

I Merges (many) object files
I Resolves external symbols
I Computes addresses
I Writes an executable file

Gabriel Laskar (EPITA) CAAL 2015 216 / 378

Object file formats Build process Development tools

6: Object file formats

Build process
Overview
Development tools
Analysis tools

Binary formats

Executable code loading

Gabriel Laskar (EPITA) CAAL 2015 217 / 378

Object file formats Build process Development tools

Development tools

I SPARC assembler: use aasm
I Project at http://savannah.nongnu.org/projects/aasm

I Sparc, Mips, PPC, ARM, ... architecture emulators
I SoCLib: https://www.soclib.fr
I QEmu

Gabriel Laskar (EPITA) CAAL 2015 218 / 378

http://savannah.nongnu.org/projects/aasm
https://www.soclib.fr

Object file formats Build process Analysis tools

6: Object file formats

Build process
Overview
Development tools
Analysis tools

Binary formats

Executable code loading

Gabriel Laskar (EPITA) CAAL 2015 219 / 378

Object file formats Build process Analysis tools

objdump

I Displays object (executable) file tables, on host architecture
I Disassembles object (executable) file code-sections
I Useful options:

I -h: display the section headers
I -t: display the symbol tables
I -dx: disassemble

Gabriel Laskar (EPITA) CAAL 2015 220 / 378

Object file formats Build process Analysis tools

readelf

I Displays ELF object (executable) file tables, on any architecture

Gabriel Laskar (EPITA) CAAL 2015 221 / 378

Object file formats Binary formats

6: Object file formats

Build process

Binary formats
Simple binary formats
How about code reuse and splitting
Linking
File formats history

Executable code loading

Gabriel Laskar (EPITA) CAAL 2015 222 / 378

Object file formats Binary formats Simple binary formats

6: Object file formats

Build process

Binary formats
Simple binary formats
How about code reuse and splitting
Linking
File formats history

Executable code loading

Gabriel Laskar (EPITA) CAAL 2015 223 / 378

Object file formats Binary formats Simple binary formats

Simple binary formats

Consider an object program that does not need other object programs to
build a binary program:

I the assembler collects code markers (labels)
I the assembler resolves all labels and replaces all of them in the code

Gabriel Laskar (EPITA) CAAL 2015 224 / 378

Object file formats Binary formats Simple binary formats

Flat program

The labels are immediately replaced and written by the assembler in the
binary file:

00001200

...

90 nop

00001201 ...

my_function:

00000001

OpcodesAddress

00000006

00000000 90 nop

B8 78 56 34 12 mov eax, 0x12345678

E8 00 12 00 00 call my_function

Source code

Gabriel Laskar (EPITA) CAAL 2015 225 / 378

Object file formats Binary formats Simple binary formats

Flat binary format

In raw binary format, the whole program is written directly in file.
Useful at boot time: the processor can only read raw code and there is no
binary loader.

Gabriel Laskar (EPITA) CAAL 2015 226 / 378

Object file formats Binary formats How about code reuse and splitting

6: Object file formats

Build process

Binary formats
Simple binary formats
How about code reuse and splitting
Linking
File formats history

Executable code loading

Gabriel Laskar (EPITA) CAAL 2015 227 / 378

Object file formats Binary formats How about code reuse and splitting

Challenges

What happens when a function must be imported?

What happens when a function must be exported?

Gabriel Laskar (EPITA) CAAL 2015 228 / 378

Object file formats Binary formats How about code reuse and splitting

Complex program

When the symbol of a called function is unresolved, the assembler leaves
the call destination address undefined:

00000006 E8 00 12 00 00

External

reference

call printf

00001200

...

90 nop

00001201 ...

my_function:

00000001

OpcodesAddress

00000006

00000000 90 nop

B8 78 56 34 12 mov eax, 0x12345678

E8 00 12 00 00 call my_function

Source code

⇒ The binary format must hold information on created “holes”

Gabriel Laskar (EPITA) CAAL 2015 229 / 378

Object file formats Binary formats How about code reuse and splitting

Needs

To fill the holes left by the assembler later on, the binary file must hold:
I A symbol table, which stores each label identifier,
I A relocation table, which shows all the remaining “holes”
I Labels associated to each “hole”.

More generaly, a binary file format must also hold:
I A header containing general informations needed to access various

parts of the file,
I Several sections holding code and data (raw data).

Gabriel Laskar (EPITA) CAAL 2015 230 / 378

Object file formats Binary formats How about code reuse and splitting

Abstraction of a binary file format

string table

symbol table

section table

file header

.bss

reloc. table

.data

.rodata

.text

.data

.rodata

.text

(not in file)

object file sectionsobject file headers

(Information regarding sections, symbol table etc. are usually identified
within the file header)

Gabriel Laskar (EPITA) CAAL 2015 231 / 378

Object file formats Binary formats How about code reuse and splitting

The symbol table

The symbol table associates each symbol identifier to the code (or data)
address it represents (when the address has been resolved):

symbol table

"printf"

"my_func"

"fopen"
my_func:

 ...

0106

0105

0100

0000

0005

E8 ?? ?? ?? ??

90

E8 ?? ?? ?? ??

E8 00 01 00 00

E8 ?? ?? ?? ??

call printf

nop

call fopen

call my_func

call printf

Gabriel Laskar (EPITA) CAAL 2015 232 / 378

Object file formats Binary formats How about code reuse and splitting

The relocation table

The relocation table associates each “hole” address to a label identifier
address:

relocation table

printf

0006

0107

printf

0101

fopen

symbol table

"printf"

"my_func"

"fopen"
my_func:

 ...

0106

0105

0100

0000

0005

E8 ?? ?? ?? ??

90

E8 ?? ?? ?? ??

E8 00 01 00 00

E8 ?? ?? ?? ??

call printf

nop

call fopen

call my_func

call printf

Gabriel Laskar (EPITA) CAAL 2015 233 / 378

Object file formats Binary formats How about code reuse and splitting

BSS regions

Instead of keeping a bunch of empty bytes in the binary file for big static
variables (arrays), the header can specify a whole region which must be
filled with zero.
BSS regions makes the file smaller and faster to load.

Gabriel Laskar (EPITA) CAAL 2015 234 / 378

Object file formats Binary formats Linking

6: Object file formats

Build process

Binary formats
Simple binary formats
How about code reuse and splitting
Linking
File formats history

Executable code loading

Gabriel Laskar (EPITA) CAAL 2015 235 / 378

Object file formats Binary formats Linking

Linking

The operation that combines a list of object programs into a binary
program is called linking. The tasks that must be accomplished by the
linker are:
1. Named sections from different object programs must be merged

together into one named section.
2. Merged sections must be put together into the sections of the

memory model.
3. Each use of a name in an object program’s references list must be

replaced by an address in the virtual address space.

Gabriel Laskar (EPITA) CAAL 2015 236 / 378

Object file formats Binary formats Linking

Merging object files

Combining each .text section together, each .data section together, etc.:

.data

.rodata

.text

.data

.rodata

.text

.data

.rodata

.text

Gabriel Laskar (EPITA) CAAL 2015 237 / 378

Object file formats Binary formats Linking

Zoom on .text section merging

Symbol = S Symbol = B + S

A object

section

B object

section

merged object

section

C

B

A

0x0 0x0 0x0

.text

.text

.text

Gabriel Laskar (EPITA) CAAL 2015 238 / 378

Object file formats Binary formats Linking

Symbol resolution

.text / .data

relocations symbols.data.textfile header

a.out format

raw binary format

Gabriel Laskar (EPITA) CAAL 2015 239 / 378

Object file formats Binary formats Linking

Executable binary files

When there is neither unresolved symbols nor relocations anymore, the file
is executable.
Executable files usually have a fixed constant load address on a given
system.
Unresolved/unused symbols may exist in an executable file if no relocation
uses it.
The strip command wipes out unused symbols from the symbol table.

Gabriel Laskar (EPITA) CAAL 2015 240 / 378

Object file formats Binary formats File formats history

6: Object file formats

Build process

Binary formats
Simple binary formats
How about code reuse and splitting
Linking
File formats history

Executable code loading

Gabriel Laskar (EPITA) CAAL 2015 241 / 378

Object file formats Binary formats File formats history

a.out: Assembler Output

relocations

raw binary format

a.out format

.text / .data

.text .data symbolsfile header

I Very simple
I .. but pretty fast to load

Gabriel Laskar (EPITA) CAAL 2015 242 / 378

Object file formats Binary formats File formats history

COFF (Common Object File Format) and ELF (Executable
and Linking Format)

.data.text relocs

.data.textsymbolsrelocs

syms

file section
tableheader

file section
tableheader

ELF format

COFF format

I Permits use of dynamic libraries

Gabriel Laskar (EPITA) CAAL 2015 243 / 378

Object file formats Binary formats File formats history

Mach-O (Darwin)

rodata datatext
load

commands

file

header

Gabriel Laskar (EPITA) CAAL 2015 244 / 378

Object file formats Binary formats File formats history

Mach-O (Darwin)
“Fat binaries”

rodata datatext
load

commands

file

header

rodata datatext
load

commands

file

header

Fat arch table

Fat header

Mach−O fat binaries

Gabriel Laskar (EPITA) CAAL 2015 245 / 378

Object file formats Executable code loading

6: Object file formats

Build process

Binary formats

Executable code loading
Binary file loading
Loading process
Dynamic libraries

Gabriel Laskar (EPITA) CAAL 2015 246 / 378

Object file formats Executable code loading Binary file loading

6: Object file formats

Build process

Binary formats

Executable code loading
Binary file loading
Loading process
Dynamic libraries

Gabriel Laskar (EPITA) CAAL 2015 247 / 378

Object file formats Executable code loading Binary file loading

Binary file loading

Executable file format is like object file format, with the following
restrictions:

I It has no relocations,
I All addresses are resolved
I It is ready to load in memory

Gabriel Laskar (EPITA) CAAL 2015 248 / 378

Object file formats Executable code loading Binary file loading

Executable format

string table

symbol table

section table

file header

.bss

reloc. table

.data

.rodata

.text

.data

.rodata

.text

(not in file)

object file sectionsobject file headersGabriel Laskar (EPITA) CAAL 2015 249 / 378

Object file formats Executable code loading Binary file loading

Executable loading

Process memory structure is mapped to internal executable file format:
I Loadable sections are loaded from file to memory
I Uninitialised data (.bss section) is allocated in process memory
I Internal file sections are ignored
I Heap and stack are allocated

Gabriel Laskar (EPITA) CAAL 2015 250 / 378

Object file formats Executable code loading Loading process

6: Object file formats

Build process

Binary formats

Executable code loading
Binary file loading
Loading process
Dynamic libraries

Gabriel Laskar (EPITA) CAAL 2015 251 / 378

Object file formats Executable code loading Loading process

Executable memory mapping

.data

.rodata

.text

memory
initialized

non
initialized
memory

stack

heap

.bss

memory sections

process memory

string table

symbol table

section table

file header

.bss

reloc. table

.data

.rodata

.text

.data

.rodata

.text

(not in file)

object file sectionsobject file headers

Gabriel Laskar (EPITA) CAAL 2015 252 / 378

Object file formats Executable code loading Loading process

Memory attributes

Memory attributes depends on section and area type:
I .text section may be loaded in executable only region (depending on

OS)
I memory used to store .rodata section will be marked as read-only
I memory used to store .data, .bss sections, heap and stack will be

marked as read/write

Gabriel Laskar (EPITA) CAAL 2015 253 / 378

Object file formats Executable code loading Loading process

Memory attributes

rw−

r−−

−−x

initialized
memory

non
initialized
memory

memory sections

from file

loaded

data

file data
internal

executable file

object file sections

executable

pages

read/write

virtual memory rights

process memory

.text

.rodata

.data

.text

.rodata

.data

.bss

heap

stack

not in file

sym. table

string table

pages

read only

pages

Gabriel Laskar (EPITA) CAAL 2015 254 / 378

Object file formats Executable code loading Dynamic libraries

6: Object file formats

Build process

Binary formats

Executable code loading
Binary file loading
Loading process
Dynamic libraries

Gabriel Laskar (EPITA) CAAL 2015 255 / 378

Object file formats Executable code loading Dynamic libraries

Dynamic libraries

Use of dynamic libraries implies:
I different and more complex memory mapping
I position independent code
I different way to handle relocations
I plenty of cool complicated stuff

Gabriel Laskar (EPITA) CAAL 2015 256 / 378

Object file formats Executable code loading Dynamic libraries

Dynamic libs in memory

Libraries have specific memory mapping and organisation:
I A dynamic library is loaded only once even if several processes use it
I Extra .data and .text sections are mapped in process memory-space
I Library .text section is mapped in several process memory
I Library .data section is copied in each process memory

Gabriel Laskar (EPITA) CAAL 2015 257 / 378

Object file formats Executable code loading Dynamic libraries

Dynamic process memory layout

stack

heap heap

stack

copy

library A

.text

.data

.data

.rodata

.text .text

.rodata

.data

.data

.text

.text

.data

.data

.text

.text

.text

.data

.text

library B

executable A process A process B executable B

copy

Gabriel Laskar (EPITA) CAAL 2015 258 / 378

Object file formats Executable code loading Dynamic libraries

Handling code location change

Dynamic libraries may not be mapped with the same virtual address in all
processes:

I Address may already be in use by an other library
I The same code must be able to run with different base addresses

Position independent code solves these problems without going through
the complex relocation process.
Relative jumps and relative data memory accesses need to be handled by
the CPU.

Gabriel Laskar (EPITA) CAAL 2015 259 / 378

Object file formats Executable code loading Dynamic libraries

Position independent code

position
independent

code

relative
branch0112 mov ...

0100 jmp +12

heap

stack

process

.text

.data

.rodata

.data

.rodata

.text

executable

.text

library

Gabriel Laskar (EPITA) CAAL 2015 260 / 378

Object file formats Executable code loading Dynamic libraries

Position dependent code

Some location change are more complicated with dynamic libraries:
I .data can’t be referred with relative addressing from .text section if

no relative data access is available.
I .data section won’t have the same address in all process memory

maps.
I .text section is common to all processes and can’t reflect .data

location differences.
The solution is to use indirect memory access to reach data objects from
code. One GOT (Global Offset Table) and PLT (Procedure Linkage Table)
will hold data object addresses for each process.
Some dynamic relocations and data copy will also help to solve this
problem.

Gabriel Laskar (EPITA) CAAL 2015 261 / 378

Object file formats Executable code loading Dynamic libraries

Use of GOT/PLT

GOT/PLT
in process A

GOT/PLT

.text
call printf.data

heap

stack

process

.text

.data

.rodata

.data

.rodata

.text

executable

.text

library

Gabriel Laskar (EPITA) CAAL 2015 262 / 378

Assembly programming

Part VII

Assembly programming

Gabriel Laskar (EPITA) CAAL 2015 263 / 378

Assembly programming Introduction

7: Assembly programming

Introduction

Pure assembly files

Inline Assembly in C

Gabriel Laskar (EPITA) CAAL 2015 264 / 378

Assembly programming Introduction

What is assembly?

Assembly is not
I binary data
I directly interpreted by the processor
I don’t mix it up with machine code

Assembly is
I a language, with a syntax, keywords, etc.
I translated in a binary format

Gabriel Laskar (EPITA) CAAL 2015 265 / 378

Assembly programming Introduction

Benefits of assembly programming

I Improve developper’s understanding of computer architecture and
programming

I Direct access to hardware resources
I Access to system features
I Speed and efficiency of programs
I Low footprint of programs

Gabriel Laskar (EPITA) CAAL 2015 266 / 378

Assembly programming Introduction

Drawbacks of assembly programming

I Low-level programming forbids abstraction
I Assembly code is hard to keep clean
I Slows development down: lots of keywords, unusual behaviors
I Each processor architecture has its own language: conventions,

registers, instructions, privileges, allowed arguments

Gabriel Laskar (EPITA) CAAL 2015 267 / 378

Assembly programming Pure assembly files

7: Assembly programming

Introduction

Pure assembly files
Anatomy of assembly code
Examples

Inline Assembly in C

Gabriel Laskar (EPITA) CAAL 2015 268 / 378

Assembly programming Pure assembly files Anatomy of assembly code

7: Assembly programming

Introduction

Pure assembly files
Anatomy of assembly code
Examples

Inline Assembly in C

Gabriel Laskar (EPITA) CAAL 2015 269 / 378

Assembly programming Pure assembly files Anatomy of assembly code

Assembly file organization

Source file is organized in different sections:
code

Contains program binary opcodes
data

Contains program global variables
rodata

Contains read-only program variables

Gabriel Laskar (EPITA) CAAL 2015 270 / 378

Assembly programming Pure assembly files Anatomy of assembly code

Assembly language statements

directives
Determine the assembler behavior

instructions
Chosen in the CPU instruction set, translated in binary
format, written in output file

operands
Expressions containing register identifiers, immediate
operands, symbols

labels
Between instructions, used to mark specific locations in
source code

Gabriel Laskar (EPITA) CAAL 2015 271 / 378

Assembly programming Pure assembly files Examples

7: Assembly programming

Introduction

Pure assembly files
Anatomy of assembly code
Examples

Inline Assembly in C

Gabriel Laskar (EPITA) CAAL 2015 272 / 378

Assembly programming Pure assembly files Examples

Assembly language statements
Example

.mod_load asm-sparc

.define FOO 5

.section code .text
.mod_asm opcodes v8

add %g0, FOO, %g1
.ends

Gabriel Laskar (EPITA) CAAL 2015 273 / 378

Assembly programming Pure assembly files Examples

Assembly language statements
Example

.mod_load asm-sparc

.mod_load out-elf32

.section code .text
.mod_asm opcodes v8

mov 0x12, %g1
mov 0x34533, %g2

add %g1, %g2, %g3
.ends

Gabriel Laskar (EPITA) CAAL 2015 274 / 378

Assembly programming Pure assembly files Examples

Assembly language statements
Example

.mod_load asm-sparc

.include sparc/v8.def

.section data .data
lbl:

.reserve 4
.ends

.section code .text
.mod_asm opcodes v8

@set .data:lbl, %g2
ld [%g2],%g1

.ends

Gabriel Laskar (EPITA) CAAL 2015 275 / 378

Assembly programming Pure assembly files Examples

Assembly language statements
Example

.mod_load asm-sparc

.include sparc/v8.def

.section code .text
.mod_asm opcodes v8

.export main

.proc main
ret
restore

.endp
.ends

Gabriel Laskar (EPITA) CAAL 2015 276 / 378

Assembly programming Pure assembly files Examples

Assembly language statements
Example

.mod_load asm-sparc

.include sparc/v8.def

.section code .text
.mod_asm opcodes v8

.extern exit

.proc my_exit
call exit
nop

.endp
.ends

Gabriel Laskar (EPITA) CAAL 2015 277 / 378

Assembly programming Inline Assembly in C

7: Assembly programming

Introduction

Pure assembly files

Inline Assembly in C
Presentation
Simple examples
Syntax
Complex examples
Named values
Quizz

Gabriel Laskar (EPITA) CAAL 2015 278 / 378

Assembly programming Inline Assembly in C Presentation

7: Assembly programming

Introduction

Pure assembly files

Inline Assembly in C
Presentation
Simple examples
Syntax
Complex examples
Named values
Quizz

Gabriel Laskar (EPITA) CAAL 2015 279 / 378

Assembly programming Inline Assembly in C Presentation

Why?

I C can’t express everything
I Cpu-specific registers (flags, condition codes, hardware counters)
I Features not addressed by language (atomic operations)
I System features (Memory handling, interrupts handling, exception

handling)
I Compiler are not always aware of possible optimizations

I Use of instruction side-effects
I Un-optimizable patterns (or optimization patterns specific to only one

algorithm)

Gabriel Laskar (EPITA) CAAL 2015 280 / 378

Assembly programming Inline Assembly in C Presentation

Inline Assembly
Compiler’s PoV

For the compiler, the assembly you pass in is:
I a raw string
I with a printf-like syntax
I passed directly to the assembler
I surounded by optional statements

I input values
I output values
I clobbered values

Gabriel Laskar (EPITA) CAAL 2015 281 / 378

Assembly programming Inline Assembly in C Presentation

Inline Assembly
Programmer’s PoV

For you, the assembly you pass is meant to either
I compute a value
I change some hardware feature
I have a side-effect

Gabriel Laskar (EPITA) CAAL 2015 282 / 378

Assembly programming Inline Assembly in C Simple examples

7: Assembly programming

Introduction

Pure assembly files

Inline Assembly in C
Presentation
Simple examples
Syntax
Complex examples
Named values
Quizz

Gabriel Laskar (EPITA) CAAL 2015 283 / 378

Assembly programming Inline Assembly in C Simple examples

Example
No data

static inline
void disable_interrupts(void)
{

asm volatile("cli");
}

Gabriel Laskar (EPITA) CAAL 2015 284 / 378

Assembly programming Inline Assembly in C Simple examples

Example
Output only

static inline
cpu_cycle_t cpu_cycle_count(void)
{

uint32_t low, high;

asm("rdtsc" : "=a" (low), "=d" (high));

return (low | ((uint64_t)high << 32));
}

Gabriel Laskar (EPITA) CAAL 2015 285 / 378

Assembly programming Inline Assembly in C Simple examples

Example
Input only

static inline
void cpu_io_write_8(uintptr_t addr, uint8_t data)
{

asm volatile("outb %0, %1"
:
: "a" (data), "d" ((uint16_t)addr)
);

}

Gabriel Laskar (EPITA) CAAL 2015 286 / 378

Assembly programming Inline Assembly in C Simple examples

Example
In-out

static inline
uint32_t cpu_endian_swap32(uint32_t x)
{
asm ("bswap %0"

: "=r" (x)
: "0" (x)
);

return x;
}

Gabriel Laskar (EPITA) CAAL 2015 287 / 378

Assembly programming Inline Assembly in C Syntax

7: Assembly programming

Introduction

Pure assembly files

Inline Assembly in C
Presentation
Simple examples
Syntax
Complex examples
Named values
Quizz

Gabriel Laskar (EPITA) CAAL 2015 288 / 378

Assembly programming Inline Assembly in C Syntax

Syntax

I one statement with optional arguments
asm [volatile]("statements \n\t"

"on many lines \n\t"
[: [output_variables]
[: [input_variables]
[: clobbered_registers]]]

);
I arguments are referenced in-order (%0..%n), whether they are input or

output!
I arguments types abide constraints, enclosed in ""

Gabriel Laskar (EPITA) CAAL 2015 289 / 378

Assembly programming Inline Assembly in C Complex examples

7: Assembly programming

Introduction

Pure assembly files

Inline Assembly in C
Presentation
Simple examples
Syntax
Complex examples
Named values
Quizz

Gabriel Laskar (EPITA) CAAL 2015 290 / 378

Assembly programming Inline Assembly in C Complex examples

Add with carry and overflow
C

uint32_t add_cv(uint32_t a, uint32_t b, uint8_t cin,
uint8_t *cout, uint8_t *vout)

{
uint64_t sum = (uint64_t)a + (uint64_t)b + (uint64_t)cin;
*cout = sum >> 32;
*vout = ((b ^ ((uint32_t)sum)) & ~(a^b)) >> 31;
return sum;

}

Gabriel Laskar (EPITA) CAAL 2015 291 / 378

Assembly programming Inline Assembly in C Complex examples

Add with carry and overflow
ASM

uint32_t add_cv(uint32_t a, uint32_t b, uint8_t cin,
uint8_t *cout, uint8_t *vout)

{
uint32_t result;

asm(" btl $0, %k5 \n"
" adcl %k3, %k4 \n"
" setc %b1 \n"
" seto %b2 \n"
: "=r" (result), "=qm" (*cout), "=qm" (*vout)
: "r" (a), "0" (b), "r" (cin)

);

return result;
}

Gabriel Laskar (EPITA) CAAL 2015 292 / 378

Assembly programming Inline Assembly in C Complex examples

Atomic increment for ARM
static inline
bool_t cpu_atomic_inc(volatile atomic_int_t *a)
{

reg_t tmp = 0, tmp2;

asm volatile("1: \n\t"
"ldrex %0, [%2] \n\t"
"add %0, %0, #1 \n\t"
"strex %1, %0, [%2] \n\t"
"tst %1, #1 \n\t"
"bne 1b \n\t"
: "=&r" (tmp), "=&r" (tmp2)
: "r" (a)
: "m" (*a)
);

return tmp != 0;
}

Gabriel Laskar (EPITA) CAAL 2015 293 / 378

Assembly programming Inline Assembly in C Named values

7: Assembly programming

Introduction

Pure assembly files

Inline Assembly in C
Presentation
Simple examples
Syntax
Complex examples
Named values
Quizz

Gabriel Laskar (EPITA) CAAL 2015 294 / 378

Assembly programming Inline Assembly in C Named values

Named values

I Using numbers for values makes code harder to write and read
I GCC permits named values in inline assembly

Gabriel Laskar (EPITA) CAAL 2015 295 / 378

Assembly programming Inline Assembly in C Named values

Named values
With numbers

static inline
bool_t cpu_atomic_inc(volatile atomic_int_t *a)
{

reg_t tmp = 0, tmp2;

asm volatile("1: \n\t"
"ldrex %0, [%2] \n\t"
"add %0, %0, #1 \n\t"
"strex %1, %0, [%2] \n\t"
"tst %1, #1 \n\t"
"bne 1b \n\t"
: "=&r" (tmp), "=&r" (tmp2)
: "r" (a)
: "m" (*a)
);

return tmp != 0;
}

Gabriel Laskar (EPITA) CAAL 2015 296 / 378

Assembly programming Inline Assembly in C Named values

Named values
Named

static inline
bool_t cpu_atomic_inc(volatile atomic_int_t *a)
{

reg_t tmp = 0, tmp2;

asm volatile("1: \n\t"
"ldrex %[tmp], [%[atomic]] \n\t"
"add %[tmp], %[tmp], #1 \n\t"
"strex %[tmp2], %[tmp], [%[atomic]] \n\t"
"tst %[tmp2], #1 \n\t"
"bne 1b \n\t"
: [tmp] "=&r" (tmp), [tmp2] "=&r" (tmp2)
, [clobber] "=m" (*a)
: [atomic] "r" (a)
);

return tmp != 0;
}

Gabriel Laskar (EPITA) CAAL 2015 297 / 378

Assembly programming Inline Assembly in C Quizz

7: Assembly programming

Introduction

Pure assembly files

Inline Assembly in C
Presentation
Simple examples
Syntax
Complex examples
Named values
Quizz

Gabriel Laskar (EPITA) CAAL 2015 298 / 378

Assembly programming Inline Assembly in C Quizz

Quizz!
What does this do?

asm volatile("":::"memory");

Gabriel Laskar (EPITA) CAAL 2015 299 / 378

Focus on x86

Part VIII

Focus on x86

Gabriel Laskar (EPITA) CAAL 2015 300 / 378

Focus on x86 x86 story

8: Focus on x86

x86 story
Timeline
x86 architecture
Instruction set

Gabriel Laskar (EPITA) CAAL 2015 301 / 378

Focus on x86 x86 story Timeline

8: Focus on x86

x86 story
Timeline
x86 architecture
Instruction set

Gabriel Laskar (EPITA) CAAL 2015 302 / 378

Focus on x86 x86 story Timeline

Early events and CPU development

1971 Intel 4004
1978 Intel 8086 & 8088, first x86 CPUs
1981 Intel 80186
1982 Intel 80286: 16 bits, 24 address bits, protection

Gabriel Laskar (EPITA) CAAL 2015 303 / 378

Focus on x86 x86 story Timeline

Successful CPU development

1985 Intel 80386: 32 bits, MMU
1989 Intel 80486: on-chip cache, pipeline
1993 Intel PentiumTM: superscalar, mmx, 64 address bits
1995 Intel Pentium Pro: ooo
1997 Intel Pentium II: internal L2
1999 Intel Pentium III: cpuid!
1999 AMD Athlon: ooo, 3dnow

Gabriel Laskar (EPITA) CAAL 2015 304 / 378

Focus on x86 x86 story Timeline

Technology barriers

2000 Intel Pentium 4: HT
2001 Intel Itanium
2003 AMD Athlon 64
2003 Intel Pentium M: P6 (PPro to PIII)
2006 Intel Pentium 4 Prescott 2M: 64 bits
2006 Intel Core/Core2: fusion
2009 Intel Core i5/i7: ...

Gabriel Laskar (EPITA) CAAL 2015 305 / 378

Focus on x86 x86 story x86 architecture

8: Focus on x86

x86 story
Timeline
x86 architecture
Instruction set

Gabriel Laskar (EPITA) CAAL 2015 306 / 378

Focus on x86 x86 story x86 architecture

x86 architecture

The x86 architecture is:
I based on a CISC instruction set.
I based on little-endian memory access.
I based on two operands instructions including memory access.
I backwards compatible: all new x86 processors are fully compatible

with their predecessors.
I very complex: Pentium IV has a 20 stages pipeline.
I newer processors have less pipeline stages

Gabriel Laskar (EPITA) CAAL 2015 307 / 378

Focus on x86 x86 story x86 architecture

Available registers

First x86 generation had a few 16-bits registers available:
I General purpose 16 bits registers:

I ax, bx, cx, dx, si, di
I General purpose 8 bits registers:

I al, bl, cl, dl
I ah, bh, ch, dh

I Stack and frame registers:
I sp, bp

I Flag registers, ...

Gabriel Laskar (EPITA) CAAL 2015 308 / 378

Focus on x86 x86 story x86 architecture

Nested registers

registers
8 bits

register
16 bits

AH AL

AX

Gabriel Laskar (EPITA) CAAL 2015 309 / 378

Focus on x86 x86 story x86 architecture

Register extensions

I Starting with the 386 processor, all registers are now 32-bits wide.
I Due to compatibility issue, 16 bits register are still present.
I eax, ebx, ecx, edx, esi, edi, esp, ebp were added.
I Even if registers size is increased, registers count remained the same:

only 6 registers are available for operations.

I For amd64, AMD extended the register count to 16, only available
with 64 bits mode enabled

I rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp,
I r8, r9, r10, r11, r12, r13, r14, r15

I AMD licensed the amd64 to Intel after the Itanium flop...

Gabriel Laskar (EPITA) CAAL 2015 310 / 378

Focus on x86 x86 story x86 architecture

Register extensions

I Starting with the 386 processor, all registers are now 32-bits wide.
I Due to compatibility issue, 16 bits register are still present.
I eax, ebx, ecx, edx, esi, edi, esp, ebp were added.
I Even if registers size is increased, registers count remained the same:

only 6 registers are available for operations.
I For amd64, AMD extended the register count to 16, only available

with 64 bits mode enabled
I rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp,

I r8, r9, r10, r11, r12, r13, r14, r15

I AMD licensed the amd64 to Intel after the Itanium flop...

Gabriel Laskar (EPITA) CAAL 2015 310 / 378

Focus on x86 x86 story x86 architecture

Register extensions

I Starting with the 386 processor, all registers are now 32-bits wide.
I Due to compatibility issue, 16 bits register are still present.
I eax, ebx, ecx, edx, esi, edi, esp, ebp were added.
I Even if registers size is increased, registers count remained the same:

only 6 registers are available for operations.
I For amd64, AMD extended the register count to 16, only available

with 64 bits mode enabled
I rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp,
I r8, r9, r10, r11, r12, r13, r14, r15

I AMD licensed the amd64 to Intel after the Itanium flop...

Gabriel Laskar (EPITA) CAAL 2015 310 / 378

Focus on x86 x86 story x86 architecture

Register extensions

I Starting with the 386 processor, all registers are now 32-bits wide.
I Due to compatibility issue, 16 bits register are still present.
I eax, ebx, ecx, edx, esi, edi, esp, ebp were added.
I Even if registers size is increased, registers count remained the same:

only 6 registers are available for operations.
I For amd64, AMD extended the register count to 16, only available

with 64 bits mode enabled
I rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp,
I r8, r9, r10, r11, r12, r13, r14, r15

I AMD licensed the amd64 to Intel after the Itanium flop...

Gabriel Laskar (EPITA) CAAL 2015 310 / 378

Focus on x86 x86 story x86 architecture

32/64 bits nested registers

RAX
64 bits
register

EAX 32 bits
register

registers
8 bits

register
16 bits

AH AL

AX

Gabriel Laskar (EPITA) CAAL 2015 311 / 378

Focus on x86 x86 story x86 architecture

Instruction format

x86 architecture is a CISC based architecture:
I All instructions have a variable length,
I Instructions length can’t be determined before reading first bytes,
I Many instructions with different formats are available.

Gabriel Laskar (EPITA) CAAL 2015 312 / 378

Focus on x86 x86 story x86 architecture

Instruction format

8086-80286

opcode opc2 immediate memory
displacement

mod
r/m

Gabriel Laskar (EPITA) CAAL 2015 313 / 378

Focus on x86 x86 story x86 architecture

Instruction format

80386-Pentium

size size
data

prefix prefix

address

SIBprefix
opcode

opcode opc2 immediate memory
displacement

mod
r/m

Gabriel Laskar (EPITA) CAAL 2015 313 / 378

Focus on x86 x86 story x86 architecture

Instruction format

3dnow!

3dnowimm

size size
data

prefix prefix

address

SIBprefix
opcode

opcode opc2 immediate memory
displacement

mod
r/m

Gabriel Laskar (EPITA) CAAL 2015 313 / 378

Focus on x86 x86 story x86 architecture

Instruction format

x86-64

prefix
x86−64

3dnowimm

size size
data

prefix prefix

address

SIBprefix
opcode

opcode opc2 immediate memory
displacement

mod
r/m

Gabriel Laskar (EPITA) CAAL 2015 313 / 378

Focus on x86 x86 story x86 architecture

Addressing mode

The x86 architecture supports several complex addressing modes. On 32
bit processors (386 and later) a memory address can contain:

I A base address register
I A address displacement
I An index register
I An multiply factor on index register

Example: mov eax, [ebx + 0x12345 + ecx * 8]

Gabriel Laskar (EPITA) CAAL 2015 314 / 378

Focus on x86 x86 story x86 architecture

Wired stack management

Specific instructions are available for stack management:
I push x instruction can be used to store data on the top of the stack

and decrement the stack pointer.
I pop x instruction removes data from the stack.
I call and ret instructions directly push and pop return address on

and from the stack.

The (e)sp register is used as stack pointer.

Gabriel Laskar (EPITA) CAAL 2015 315 / 378

Focus on x86 x86 story x86 architecture

Branch

I The x86 architecture uses a flag register to manage conditional
branches.

I Many different instructions with different lengthes can be used
depending on jump size.

I No delayed slot are used

Gabriel Laskar (EPITA) CAAL 2015 316 / 378

Focus on x86 x86 story x86 architecture

Jump size

immediate
16/32 bits

opc

E9 EB

imm.
8 bits

opc

long jump
(−32768 to +32767)

short jump
(−128 to +127)

Gabriel Laskar (EPITA) CAAL 2015 317 / 378

Focus on x86 x86 story Instruction set

8: Focus on x86

x86 story
Timeline
x86 architecture
Instruction set

Gabriel Laskar (EPITA) CAAL 2015 318 / 378

Focus on x86 x86 story Instruction set

Instruction set

x86 instruction set is huge:
I Over 580 instructions handled by Pentium 3 CPU
I Over 850 opcodes handled by Pentium 3 CPU

A single instruction can be very complex:
I Memory access capable
I Handle different data widths
I Perform complex computation

Gabriel Laskar (EPITA) CAAL 2015 319 / 378

Focus on x86 x86 story Instruction set

Instruction set extensions

Extensions to the x86 instruction set are common and all instructions are
not available on all CPUs. Starting with the pentium processor,
SIMD-based instruction sets appeared:

I MMX
I 3dNow!
I MMX2, SSE
I 3dNow2!, SSE2, SSE3, SSE4s
I To be continued...

Gabriel Laskar (EPITA) CAAL 2015 320 / 378

Focus on x86 x86 story Instruction set

Instruction set
SIMD operations

source 1
register

source 2
register

destination
register

normal operation

64 bits value

64 bits value

64 bits value

SIMD operation

4 x 16 bits

4 x 16 bits

4 x 16 bits

Gabriel Laskar (EPITA) CAAL 2015 321 / 378

Focus on x86 x86 story Instruction set

x86-specific coding

Due to its amazing number of available instructions, x86 code is highly
tunable for optimizations:

I High level languages compilers are not able to use all instructions
efficiently,

I Hand written assembly is often faster,
I Complex Instructions can be used to process unexpected tasks.

Gabriel Laskar (EPITA) CAAL 2015 322 / 378

Focus on x86 x86 story Instruction set

Instruction set
has-been parts

I aaa, aad, aam, aas, daa, das
I xlat

Gabriel Laskar (EPITA) CAAL 2015 323 / 378

Focus on x86 x86 story Instruction set

x86-specific coding
example: LEA

The LEA instruction is designed to compute memory addresses. But it can
be used to add and multiply values.

lea eax, [ebx + ecx]

lea eax, [ebx * 8 + ebx]

Gabriel Laskar (EPITA) CAAL 2015 324 / 378

Focus on x86 x86 story Instruction set

x86-specific coding
example: tiniest mem*()?

memcpy rep movbs

memset rep stosd

memcmp repe cmpsb

strncmp repnz cmpsb

Gabriel Laskar (EPITA) CAAL 2015 325 / 378

Focus on RISC processors

Part IX

Focus on RISC processors

Gabriel Laskar (EPITA) CAAL 2015 326 / 378

Focus on RISC processors History

9: Focus on RISC processors

History

Some instruction sets

Gabriel Laskar (EPITA) CAAL 2015 327 / 378

Focus on RISC processors History

Let’s see a timeline...

Alpha

EV6

21264

Alpha

EV7

21364

STI project CELL

1965 1970 1990 2000 20101975 1980 1985 1995 2005

CDC 6600

(Cray)

Data General Nova

(Edson de Castro)

RISC−I RISC−II SPARC SPARC−v8 SPARC−v9 Ultra−1 Ultra−2 Ultra−3

Mips−r2000 Mips−r3000 Mips−r4000

64−bit

Mips−r10k Mips−r12k

Mips V

Mips−r8k

Mips IV Mips32

Mips−r16k r24k

Cheetah America Bellatrix

RS−6000

RIOS 1/9

RSC PPC POWER 3

64 bits

POWER 4 POWER 5

ARM project ARM 2ARM 1 ARM 6 (v3) ARM 7

Thumb

ARM 9−tdmi ARM 11 M3 A8 M1

A9

M0

A9 >2GHz

Alpha

EV5

21164

Alpha

EV4

21064

RISC CPU

POWER 7D
A

R
PA

A
R
M

 lt
d

SU
N

SG
I

IB
M

A
co

rn

Superscalar

Q
ue

en

aw
ar

d

PRISM

O
pe

n
so

ur
ce

H
ar

d
/ S

of
t c

or
e

+lic
en

si
ng

Sof
t−

co
re

+lic
en

si
ng

H
ar

d−
co

re

Super H SH−2 SH−4SH−3 SH−6

SH−7

TS1

PA−Risc

PCX−LPCX−S

PA−7000 PA−7100−LC

(SIMD)

PCX−U

PA−8000 PA−8600

PCX−W+

PA−8900

ShortfinH
P

D
EC

H
ita

ch
i

A
−I−

M

(a
nn

ou
nc

ed
)

lic
en

si
ng

is
su

es

U
ns

ur
e

U
ns

ur
e

U
ns

ur
e

N64

PlayStatio
n 2

PlayStatio
n

PSP

Saturn

Dreamcast

3DO

GameCube

XBox 360

W
ii

PS3

DS

GBA

D
A

R
PA

Mips

RISC ProjectD
A

R
PA

UC−Berkeley

Patterson

Stanford

Hennessy

Cambridge

Gabriel Laskar (EPITA) CAAL 2015 328 / 378

Focus on RISC processors Some instruction sets

9: Focus on RISC processors

History

Some instruction sets
Mips
SPARC
PPC
ARM

Gabriel Laskar (EPITA) CAAL 2015 329 / 378

Focus on RISC processors Some instruction sets Mips

9: Focus on RISC processors

History

Some instruction sets
Mips
SPARC
PPC
ARM

Gabriel Laskar (EPITA) CAAL 2015 330 / 378

Focus on RISC processors Some instruction sets Mips

Mips
Instruction format

012345678910111213141516171819202122232425262728293031

J/JAL offset

OP rs rt imm
Special rs rt rd ... op

I 32 GPR
I hard-wired r0 to 0
I 32 FPU registers, all sizes aliased
I delay slot

Gabriel Laskar (EPITA) CAAL 2015 331 / 378

Focus on RISC processors Some instruction sets Mips

Mips
Asm code

addiu r2, r3, 0x42 ; alu reg / imm
or r3, r4, r5 ; alu reg / reg

lui r2, 0x1234 ; load upper immediate
ori r2, r2, 0x5678 ; r2 = 0x12345678

lw r4, 0x1234(r9) ; load word from r9 + 0x1234

slt r1, r2, r3 ; test if r2 < r3
bnez r1, 2f ; jump if true
nop ; delay slot

lbu r2, (r3) ; load byte, not sign extended

jal foo ; pc = foo; r31 = return address
nopGabriel Laskar (EPITA) CAAL 2015 332 / 378

Focus on RISC processors Some instruction sets SPARC

9: Focus on RISC processors

History

Some instruction sets
Mips
SPARC
PPC
ARM

Gabriel Laskar (EPITA) CAAL 2015 333 / 378

Focus on RISC processors Some instruction sets SPARC

SPARC
Instruction format 012345678910111213141516171819202122232425262728293031

01 offset
012345678910111213141516171819202122232425262728293031

00 rd op2 imm

00 a cond op2 imm
012345678910111213141516171819202122232425262728293031

1x rd op3 rs1 0 asi rs2

1x rd op3 rs1 1 imm

1x rd op3 rs1 opf rs2

I 32 GPR
I hard-wired %g0 to 0
I register window
I unwindowed aliased FPU registers, 8 * 128 bits, 32 * 32 bits
I delay slotGabriel Laskar (EPITA) CAAL 2015 334 / 378

Focus on RISC processors Some instruction sets SPARC

SPARC
Asm code

add %g3, 0x42, %g2 ; alu reg / imm
or %g3, %g4, %g5 ; alu reg / reg

sethi 0x12345, %g2 ; load upper immediate (20 bits)
or %g2, 0x678, %g2 ; g2 = 0x12345678

ld [%l2 + 0x1234], %g4 ; load word from l2 + 0x1234
ld [%l2 + %i3], %g4 ; load word from l2 + i3

tst %l2, %l3 ; test if l2 < l3
blt 3f ; jump if true

Gabriel Laskar (EPITA) CAAL 2015 335 / 378

Focus on RISC processors Some instruction sets PPC

9: Focus on RISC processors

History

Some instruction sets
Mips
SPARC
PPC
ARM

Gabriel Laskar (EPITA) CAAL 2015 336 / 378

Focus on RISC processors Some instruction sets PPC

PowerPC
Instruction format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

op jump offset aa lk

op rd ra imm
op rd ra rb mb me rc

op rd ra rb op2 rc

I 32 GPR
I 32 FPR, fixed internal representation
I additional registers for lr, ctr
I no global flags, but 8 “cause registers” crx
I can merge causes with logical operations

Gabriel Laskar (EPITA) CAAL 2015 337 / 378

Focus on RISC processors Some instruction sets PPC

PowerPC
Asm code

addi 3, 2, 42 ; alu reg / imm
or. 3, 4, 5 ; alu reg / reg, update cr0

lis 3, 0x1234 ; load upper immediate (16 bits)
ori 3, 3, 0x5678 ; r3 = 0x12345678

lwz 4, 9, 0x1234 ; load word from r9 + 0x1234
lwzx 4, 9, 3 ; load word from r9 + r3

mtctr 4 ; put r4 in count register
...
bdnzl 2f ; Decrement CTR, Branch if CTR != 0

rlwinm ... ; Rotate and mask

Gabriel Laskar (EPITA) CAAL 2015 338 / 378

Focus on RISC processors Some instruction sets ARM

9: Focus on RISC processors

History

Some instruction sets
Mips
SPARC
PPC
ARM

Gabriel Laskar (EPITA) CAAL 2015 339 / 378

Focus on RISC processors Some instruction sets ARM

ARM
Instruction features

I 16 GPR, one of them is pc (r15)
I Every instruction is “guarded” by a condition. It may be:

I always, >, >=, “higher”, overflow, negative, carry, ==
I their opposites

I aliased FPR: 16 double, 32 float

You can prefix any instruction with “never”:
I 1/16th of the instruction set is “nop”...

Gabriel Laskar (EPITA) CAAL 2015 340 / 378

Focus on RISC processors Some instruction sets ARM

ARM
Instruction features

I 16 GPR, one of them is pc (r15)
I Every instruction is “guarded” by a condition. It may be:

I always, >, >=, “higher”, overflow, negative, carry, ==
I their opposites

I aliased FPR: 16 double, 32 float

You can prefix any instruction with “never”:
I 1/16th of the instruction set is “nop”...

Gabriel Laskar (EPITA) CAAL 2015 340 / 378

Focus on RISC processors Some instruction sets ARM

ARM
Instruction format

012345678910111213141516171819202122232425262728293031

cond 00 i op s rn rd imm/reg

cond 01 i p u bw l rn rd imm/reg

cond 100 p u bw l rn reg-list

cond 101 l jmp offset

cond 11 coproc, sys

Gabriel Laskar (EPITA) CAAL 2015 341 / 378

Focus on RISC processors Some instruction sets ARM

ARM
Instruction format (2)

012345678910111213141516171819202122232425262728293031

cond 00 i op s rn rd imm/reg

cond 01 i p u bw l rn rd imm/reg

1 rotate imm

0 rs 0 ty 1 rm

0 amount ty 0 rm

and r3, r7, #42 ; r3 = r7 & 0x2a
add r2, r8, r5, lsl r1 ; r2 = r8 + (r5 << r1)
sub r1, r9, r1, lsl #1 ; r1 = r9 - (r1 << 1)

012345678910111213141516171819202122232425262728293031

1110 00 1 and 0 r7 r3 « 0 0x2a

1110 00 0 add 0 r8 r2 r1 0 lsl 1 r5

1110 00 0 sub 0 r9 r1 0x1 lsl 0 r1

Gabriel Laskar (EPITA) CAAL 2015 342 / 378

Focus on RISC processors Some instruction sets ARM

ARM
Instruction format (2)

012345678910111213141516171819202122232425262728293031

cond 00 i op s rn rd imm/reg

cond 01 i p u bw l rn rd imm/reg

1 rotate imm

0 rs 0 ty 1 rm

0 amount ty 0 rm

and r3, r7, #42 ; r3 = r7 & 0x2a
add r2, r8, r5, lsl r1 ; r2 = r8 + (r5 << r1)
sub r1, r9, r1, lsl #1 ; r1 = r9 - (r1 << 1)

012345678910111213141516171819202122232425262728293031

1110 00 1 and 0 r7 r3 « 0 0x2a

1110 00 0 add 0 r8 r2 r1 0 lsl 1 r5

1110 00 0 sub 0 r9 r1 0x1 lsl 0 r1Gabriel Laskar (EPITA) CAAL 2015 342 / 378

Focus on RISC processors Some instruction sets ARM

ARM
Asm code

add r3, r2, #0x42 ; alu reg / imm
orr r3, r4, r5 ; alu reg / reg
bic r3, r4, r5, lsr #4 ; alu reg / reg & shift

cmp r2, #0 ; test if r2 < 0
rsblt r2, r2, #0 ; then r2 = 0 - r2

ldr r2, #0x12345678 ; rewritten as
ldr r2, [pc, #offset] ; pc-relative load

streq r4, [r2, r3, lsl #4] ; store word to r2 + r3 << 4
; only if last cmp is ‘eq’

str r4, [r2, #8]! ; store word to r2 + 8
; and r2 = r2 + 8

offset: ; 32-bit immediates zone
0x12345678Gabriel Laskar (EPITA) CAAL 2015 343 / 378

Focus on RISC processors Some instruction sets ARM

ARM
Block transfers

012345678910111213141516171819202122232425262728293031

cond 100 p u bw l rn reg-list

stmdb sp!, {r2, r3, r4, r8}
push {r2, r3, r4, r8}

012345678910111213141516171819202122232425262728293031

cond 100 1 0 0 1 0 r13 0000000100011100

Gabriel Laskar (EPITA) CAAL 2015 344 / 378

Focus on RISC processors Some instruction sets ARM

ARM
Block transfers hacks (1)
The link register is r14, then the following code saves r14 and restores it to
PC afterwards...

push {r2, r3, r4, r8, lr}
...
pop {r2, r3, r4, r8, pc}

..00

..04 sp → r2

..08 r3

..0c r4

..10 r8

..14 lr

..18 old sp → xxx

..1c

..20
Gabriel Laskar (EPITA) CAAL 2015 345 / 378

Focus on RISC processors Some instruction sets ARM

ARM
Block transfers hacks (2)

Do a memcpy with some free registers, for instance, copy 16 bytes from
*r0 to *r1, not using r2 nor r5, update r0 and r1 to point on next block...

ldmia r0!, {r3, r4, r6, r7}
stmia r1!, {r3, r4, r6, r7}

Gabriel Laskar (EPITA) CAAL 2015 346 / 378

Focus on RISC processors Some instruction sets ARM

ARM Instruction-space exhaustion

Eventually, ARM instruction-set continued to grow despite the obvious
exhaustion of the “clean” instruction-set space.

I abuse of concatenation of seldom bits around the instruction word
I sometimes forbid r15 as an operand, and reuse other fields
I reuse the “never” condition code

Gabriel Laskar (EPITA) CAAL 2015 347 / 378

Focus on RISC processors Some instruction sets ARM

ARM Instruction-space exhaustion
Illustration

012345678910111213141516171819202122232425262728293031

cond 00 I op s rn rd op2

1 rotate imm

0 rs 0 ty 1 rm

0 amount ty 0 rm

How to add the multiplication?

cond 00 0 000 a s rn rd rs 1001 rm

Gabriel Laskar (EPITA) CAAL 2015 348 / 378

Focus on RISC processors Some instruction sets ARM

ARM Instruction-space exhaustion
Illustration

012345678910111213141516171819202122232425262728293031

cond 00 I op s rn rd op2

1 rotate imm

0 rs 0 ty 1 rm

0 amount ty 0 rm

How to add the multiplication?

cond 00 0 000 a s rn rd rs 1001 rm

Gabriel Laskar (EPITA) CAAL 2015 348 / 378

Focus on RISC processors Some instruction sets ARM

Thumb mode

One goal: Code compression.
Concessions to pack a maximum of operations in a minimal space:

I Access to only 8 registers among 16
I Implicit stack ops
I Implicit pc-relative operations
I No predicates any more

Dirty hacks for making it work:
I Use lower bit of r15 as a mode indicator
I Use a new bx/blx instruction

Gabriel Laskar (EPITA) CAAL 2015 349 / 378

Focus on RISC processors Some instruction sets ARM

Thumb2

Keep up with thumb, this is great.
Ideas:

I Have an asm-code compatibility with ARM
I Remap the whole ARM 32-bit instruction set in 16-bit thumb

I 16 bit instruction words are not enough any more
Never mind

I Keep the basic 16-bit thumb encoding
I When we need more, just make the instruction 32-bits long...
I Decode mixed 16/32-bits instructions
I Only 16-bit alignment constraint for 32-bit long thumb-2 ops

Then Thumb-2 is a RISC with a CISC encoding!

Gabriel Laskar (EPITA) CAAL 2015 350 / 378

Focus on RISC processors Some instruction sets ARM

Thumb2

Keep up with thumb, this is great.
Ideas:

I Have an asm-code compatibility with ARM
I Remap the whole ARM 32-bit instruction set in 16-bit thumb
I 16 bit instruction words are not enough any more

Never mind
I Keep the basic 16-bit thumb encoding
I When we need more, just make the instruction 32-bits long...
I Decode mixed 16/32-bits instructions
I Only 16-bit alignment constraint for 32-bit long thumb-2 ops

Then Thumb-2 is a RISC with a CISC encoding!

Gabriel Laskar (EPITA) CAAL 2015 350 / 378

Focus on RISC processors Some instruction sets ARM

Thumb2

Keep up with thumb, this is great.
Ideas:

I Have an asm-code compatibility with ARM
I Remap the whole ARM 32-bit instruction set in 16-bit thumb
I 16 bit instruction words are not enough any more

Never mind
I Keep the basic 16-bit thumb encoding
I When we need more, just make the instruction 32-bits long...

I Decode mixed 16/32-bits instructions
I Only 16-bit alignment constraint for 32-bit long thumb-2 ops

Then Thumb-2 is a RISC with a CISC encoding!

Gabriel Laskar (EPITA) CAAL 2015 350 / 378

Focus on RISC processors Some instruction sets ARM

Thumb2

Keep up with thumb, this is great.
Ideas:

I Have an asm-code compatibility with ARM
I Remap the whole ARM 32-bit instruction set in 16-bit thumb
I 16 bit instruction words are not enough any more

Never mind
I Keep the basic 16-bit thumb encoding
I When we need more, just make the instruction 32-bits long...
I Decode mixed 16/32-bits instructions

I Only 16-bit alignment constraint for 32-bit long thumb-2 ops
Then Thumb-2 is a RISC with a CISC encoding!

Gabriel Laskar (EPITA) CAAL 2015 350 / 378

Focus on RISC processors Some instruction sets ARM

Thumb2

Keep up with thumb, this is great.
Ideas:

I Have an asm-code compatibility with ARM
I Remap the whole ARM 32-bit instruction set in 16-bit thumb
I 16 bit instruction words are not enough any more

Never mind
I Keep the basic 16-bit thumb encoding
I When we need more, just make the instruction 32-bits long...
I Decode mixed 16/32-bits instructions
I Only 16-bit alignment constraint for 32-bit long thumb-2 ops

Then Thumb-2 is a RISC with a CISC encoding!

Gabriel Laskar (EPITA) CAAL 2015 350 / 378

Focus on RISC processors Some instruction sets ARM

Thumb2

Keep up with thumb, this is great.
Ideas:

I Have an asm-code compatibility with ARM
I Remap the whole ARM 32-bit instruction set in 16-bit thumb
I 16 bit instruction words are not enough any more

Never mind
I Keep the basic 16-bit thumb encoding
I When we need more, just make the instruction 32-bits long...
I Decode mixed 16/32-bits instructions
I Only 16-bit alignment constraint for 32-bit long thumb-2 ops

Then Thumb-2 is a RISC with a CISC encoding!

Gabriel Laskar (EPITA) CAAL 2015 350 / 378

CPU-aware optimizations

Part X

CPU-aware optimizations

Gabriel Laskar (EPITA) CAAL 2015 351 / 378

CPU-aware optimizations Rationale

10: CPU-aware optimizations

Rationale

Examples

Code readability guidelines

Gabriel Laskar (EPITA) CAAL 2015 352 / 378

CPU-aware optimizations Rationale

Purpose

Knowing the low-level implementation of the processors, we can:
I write code easier for the compiler to translate
I write code easier for the CPU to run

I because nicer with the pipeline
I because nicer with the memory subsystem

Gabriel Laskar (EPITA) CAAL 2015 353 / 378

CPU-aware optimizations Examples

10: CPU-aware optimizations

Rationale

Examples
abs()
Sign extension
Power of two detection
Mask merging

Code readability guidelines

Gabriel Laskar (EPITA) CAAL 2015 354 / 378

CPU-aware optimizations Examples abs()

10: CPU-aware optimizations

Rationale

Examples
abs()
Sign extension
Power of two detection
Mask merging

Code readability guidelines

Gabriel Laskar (EPITA) CAAL 2015 355 / 378

CPU-aware optimizations Examples abs()

Nicer with the pipeline
example: abs()

The absolute value is a good example of optimized code which is easy to
implement in an efficient and smart way.

Gabriel Laskar (EPITA) CAAL 2015 356 / 378

CPU-aware optimizations Examples abs()

Nicer with the pipeline
abs() basic code

int abs(int x)
{

if (x < 0)
return -x;

else
return x;

}

int abs(int x)
{

return (x < 0) ? -x : x;
}

Gabriel Laskar (EPITA) CAAL 2015 357 / 378

CPU-aware optimizations Examples abs()

Nicer with the pipeline
example: abs()

Let’s go back to some mathematical principles:

I Addition: a + 1 = a - (-1)
I Number representation: -1 = 0xffffffff
I Negation: -a = (not a) + 1
I not a = a xor 0xffffffff = a xor -1

I if (x < 0), return
I if (x > 0), return

I Sign extension: (x » 31)

Gabriel Laskar (EPITA) CAAL 2015 358 / 378

CPU-aware optimizations Examples abs()

Nicer with the pipeline
example: abs()

Let’s go back to some mathematical principles:
I Addition: a + 1 = a - (-1)

I Number representation: -1 = 0xffffffff
I Negation: -a = (not a) + 1
I not a = a xor 0xffffffff = a xor -1

I if (x < 0), return
I if (x > 0), return

I Sign extension: (x » 31)

Gabriel Laskar (EPITA) CAAL 2015 358 / 378

CPU-aware optimizations Examples abs()

Nicer with the pipeline
example: abs()

Let’s go back to some mathematical principles:
I Addition: a + 1 = a - (-1)
I Number representation: -1 = 0xffffffff

I Negation: -a = (not a) + 1
I not a = a xor 0xffffffff = a xor -1

I if (x < 0), return
I if (x > 0), return

I Sign extension: (x » 31)

Gabriel Laskar (EPITA) CAAL 2015 358 / 378

CPU-aware optimizations Examples abs()

Nicer with the pipeline
example: abs()

Let’s go back to some mathematical principles:
I Addition: a + 1 = a - (-1)
I Number representation: -1 = 0xffffffff
I Negation: -a = (not a) + 1

I not a = a xor 0xffffffff = a xor -1

I if (x < 0), return
I if (x > 0), return

I Sign extension: (x » 31)

Gabriel Laskar (EPITA) CAAL 2015 358 / 378

CPU-aware optimizations Examples abs()

Nicer with the pipeline
example: abs()

Let’s go back to some mathematical principles:
I Addition: a + 1 = a - (-1)
I Number representation: -1 = 0xffffffff
I Negation: -a = (not a) + 1
I not a = a xor 0xffffffff = a xor -1

I if (x < 0), return
I if (x > 0), return

I Sign extension: (x » 31)

Gabriel Laskar (EPITA) CAAL 2015 358 / 378

CPU-aware optimizations Examples abs()

Nicer with the pipeline
example: abs()

Let’s go back to some mathematical principles:
I Addition: a + 1 = a - (-1)
I Number representation: -1 = 0xffffffff
I Negation: -a = (not a) + 1
I not a = a xor 0xffffffff = a xor -1

I if (x < 0), return -x
I if (x > 0), return x

I Sign extension: (x » 31)

Gabriel Laskar (EPITA) CAAL 2015 358 / 378

CPU-aware optimizations Examples abs()

Nicer with the pipeline
example: abs()

Let’s go back to some mathematical principles:
I Addition: a + 1 = a - (-1)
I Number representation: -1 = 0xffffffff
I Negation: -a = (not a) + 1
I not a = a xor 0xffffffff = a xor -1

I if (x < 0), return ((not x) + 1)
I if (x > 0), return x

I Sign extension: (x » 31)

Gabriel Laskar (EPITA) CAAL 2015 358 / 378

CPU-aware optimizations Examples abs()

Nicer with the pipeline
example: abs()

Let’s go back to some mathematical principles:
I Addition: a + 1 = a - (-1)
I Number representation: -1 = 0xffffffff
I Negation: -a = (not a) + 1
I not a = a xor 0xffffffff = a xor -1

I if (x < 0), return ((x ^ 0xffffffff) - 0xffffffff)
I if (x > 0), return ((x ^ 0) + 0)

I Sign extension: (x » 31)

Gabriel Laskar (EPITA) CAAL 2015 358 / 378

CPU-aware optimizations Examples abs()

Nicer with the pipeline
example: abs()

Let’s go back to some mathematical principles:
I Addition: a + 1 = a - (-1)
I Number representation: -1 = 0xffffffff
I Negation: -a = (not a) + 1
I not a = a xor 0xffffffff = a xor -1

I if (x < 0), return ((x ^ 0xffffffff) - 0xffffffff)
I if (x > 0), return ((x ^ 0) + 0)

How to produce -1 when x < 0?

I Sign extension: (x » 31)

Gabriel Laskar (EPITA) CAAL 2015 358 / 378

CPU-aware optimizations Examples abs()

Nicer with the pipeline
example: abs()

Let’s go back to some mathematical principles:
I Addition: a + 1 = a - (-1)
I Number representation: -1 = 0xffffffff
I Negation: -a = (not a) + 1
I not a = a xor 0xffffffff = a xor -1

I if (x < 0), return ((x ^ 0xffffffff) - 0xffffffff)
I if (x > 0), return ((x ^ 0) + 0)

How to produce -1 when x < 0?
I Sign extension: (x » 31)

Gabriel Laskar (EPITA) CAAL 2015 358 / 378

CPU-aware optimizations Examples abs()

Nicer with the pipeline
abs() better code

int abs(int x)
{

int sign_word = x >> 31;
return (x ^ sign_word) - sign_word;

}

int abs(int x)
{

int sign_word = -(1 & (x >> 31));
return (x ^ sign_word) - sign_word;

}

Gabriel Laskar (EPITA) CAAL 2015 359 / 378

CPU-aware optimizations Examples abs()

Nicer with the pipeline
abs() better code

int abs(int x)
{

int sign_word = x >> 31;
return (x ^ sign_word) - sign_word;

}

int abs(int x)
{

int sign_word = -(1 & (x >> 31));
return (x ^ sign_word) - sign_word;

}

Gabriel Laskar (EPITA) CAAL 2015 359 / 378

CPU-aware optimizations Examples Sign extension

10: CPU-aware optimizations

Rationale

Examples
abs()
Sign extension
Power of two detection
Mask merging

Code readability guidelines

Gabriel Laskar (EPITA) CAAL 2015 360 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size

Sometimes, we need to sign extend a value from an arbitrary word width
(say 13 bits) to a CPU word (say 32 bits).
How to do it?

x 0000000000000000000snnnnnnnnnnnn

-high 11111111111111111111000000000000

result ssssssssssssssssssssnnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int high = 1 << (bits - 1);
return (val & high) ? (val | (-high)) : val;

}

Gabriel Laskar (EPITA) CAAL 2015 361 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size

Sometimes, we need to sign extend a value from an arbitrary word width
(say 13 bits) to a CPU word (say 32 bits).
How to do it?

x 0000000000000000000snnnnnnnnnnnn

-high 11111111111111111111000000000000

result ssssssssssssssssssssnnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int high = 1 << (bits - 1);
return (val & high) ? (val | (-high)) : val;

}

Gabriel Laskar (EPITA) CAAL 2015 361 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size

Sometimes, we need to sign extend a value from an arbitrary word width
(say 13 bits) to a CPU word (say 32 bits).
How to do it?

x 0000000000000000000snnnnnnnnnnnn

-high 11111111111111111111000000000000

result ssssssssssssssssssssnnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int high = 1 << (bits - 1);
return (val & high) ? (val | (-high)) : val;

}

Gabriel Laskar (EPITA) CAAL 2015 361 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size

Sometimes, we need to sign extend a value from an arbitrary word width
(say 13 bits) to a CPU word (say 32 bits).
How to do it?

x 0000000000000000000snnnnnnnnnnnn

-high 11111111111111111111000000000000

result ssssssssssssssssssssnnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int high = 1 << (bits - 1);
return (val & high) ? (val | (-high)) : val;

}

Gabriel Laskar (EPITA) CAAL 2015 361 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size

x 0000000000000000000snnnnnnnnnnnn

« snnnnnnnnnnnn0000000000000000000

» ssssssssssssssssssssnnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int shift_bits = 32 - bits;
return (val << shift_bits) >> shift_bits;

}

Gabriel Laskar (EPITA) CAAL 2015 362 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size

x 0000000000000000000snnnnnnnnnnnn

« snnnnnnnnnnnn0000000000000000000

» ssssssssssssssssssssnnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int shift_bits = 32 - bits;
return (val << shift_bits) >> shift_bits;

}

Gabriel Laskar (EPITA) CAAL 2015 362 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size

x 0000000000000000000snnnnnnnnnnnn

« snnnnnnnnnnnn0000000000000000000

» ssssssssssssssssssssnnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int shift_bits = 32 - bits;
return (val << shift_bits) >> shift_bits;

}

Gabriel Laskar (EPITA) CAAL 2015 362 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size

x 0000000000000000000snnnnnnnnnnnn

« snnnnnnnnnnnn0000000000000000000

» ssssssssssssssssssssnnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int shift_bits = 32 - bits;
return (val << shift_bits) >> shift_bits;

}

Gabriel Laskar (EPITA) CAAL 2015 362 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size
x 0000000000000000000snnnnnnnnnnnn

sb 0000000000000000000s000000000000
xor 0000000000000000000Snnnnnnnnnnnn

x 00000000000000000001nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000000nnnnnnnnnnnn
.. - sb 11111111111111111111nnnnnnnnnnnn

x 00000000000000000000nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000001nnnnnnnnnnnn
.. - sb 00000000000000000000nnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int high = 1 << (bits-1);
return (val ^ high) - high;

}

Gabriel Laskar (EPITA) CAAL 2015 363 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size
x 0000000000000000000snnnnnnnnnnnn
sb 0000000000000000000s000000000000

xor 0000000000000000000Snnnnnnnnnnnn

x 00000000000000000001nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000000nnnnnnnnnnnn
.. - sb 11111111111111111111nnnnnnnnnnnn

x 00000000000000000000nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000001nnnnnnnnnnnn
.. - sb 00000000000000000000nnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int high = 1 << (bits-1);
return (val ^ high) - high;

}

Gabriel Laskar (EPITA) CAAL 2015 363 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size
x 0000000000000000000snnnnnnnnnnnn
sb 0000000000000000000s000000000000
xor 0000000000000000000Snnnnnnnnnnnn

x 00000000000000000001nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000000nnnnnnnnnnnn
.. - sb 11111111111111111111nnnnnnnnnnnn

x 00000000000000000000nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000001nnnnnnnnnnnn
.. - sb 00000000000000000000nnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int high = 1 << (bits-1);
return (val ^ high) - high;

}

Gabriel Laskar (EPITA) CAAL 2015 363 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size
x 0000000000000000000snnnnnnnnnnnn
sb 0000000000000000000s000000000000
xor 0000000000000000000Snnnnnnnnnnnn

x 00000000000000000001nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000000nnnnnnnnnnnn
.. - sb 11111111111111111111nnnnnnnnnnnn

x 00000000000000000000nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000001nnnnnnnnnnnn
.. - sb 00000000000000000000nnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int high = 1 << (bits-1);
return (val ^ high) - high;

}

Gabriel Laskar (EPITA) CAAL 2015 363 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size
x 0000000000000000000snnnnnnnnnnnn
sb 0000000000000000000s000000000000
xor 0000000000000000000Snnnnnnnnnnnn

x 00000000000000000001nnnnnnnnnnnn

sb 00000000000000000001000000000000
x ^ sb 00000000000000000000nnnnnnnnnnnn
.. - sb 11111111111111111111nnnnnnnnnnnn

x 00000000000000000000nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000001nnnnnnnnnnnn
.. - sb 00000000000000000000nnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int high = 1 << (bits-1);
return (val ^ high) - high;

}

Gabriel Laskar (EPITA) CAAL 2015 363 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size
x 0000000000000000000snnnnnnnnnnnn
sb 0000000000000000000s000000000000
xor 0000000000000000000Snnnnnnnnnnnn

x 00000000000000000001nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000000nnnnnnnnnnnn
.. - sb 11111111111111111111nnnnnnnnnnnn

x 00000000000000000000nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000001nnnnnnnnnnnn
.. - sb 00000000000000000000nnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int high = 1 << (bits-1);
return (val ^ high) - high;

}

Gabriel Laskar (EPITA) CAAL 2015 363 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size
x 0000000000000000000snnnnnnnnnnnn
sb 0000000000000000000s000000000000
xor 0000000000000000000Snnnnnnnnnnnn

x 00000000000000000001nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000000nnnnnnnnnnnn
.. - sb 11111111111111111111nnnnnnnnnnnn

x 00000000000000000000nnnnnnnnnnnn

sb 00000000000000000001000000000000
x ^ sb 00000000000000000001nnnnnnnnnnnn
.. - sb 00000000000000000000nnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int high = 1 << (bits-1);
return (val ^ high) - high;

}

Gabriel Laskar (EPITA) CAAL 2015 363 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size
x 0000000000000000000snnnnnnnnnnnn
sb 0000000000000000000s000000000000
xor 0000000000000000000Snnnnnnnnnnnn

x 00000000000000000001nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000000nnnnnnnnnnnn
.. - sb 11111111111111111111nnnnnnnnnnnn

x 00000000000000000000nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000001nnnnnnnnnnnn
.. - sb 00000000000000000000nnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int high = 1 << (bits-1);
return (val ^ high) - high;

}

Gabriel Laskar (EPITA) CAAL 2015 363 / 378

CPU-aware optimizations Examples Sign extension

Sign extension at an arbitrary size
x 0000000000000000000snnnnnnnnnnnn
sb 0000000000000000000s000000000000
xor 0000000000000000000Snnnnnnnnnnnn

x 00000000000000000001nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000000nnnnnnnnnnnn
.. - sb 11111111111111111111nnnnnnnnnnnn

x 00000000000000000000nnnnnnnnnnnn
sb 00000000000000000001000000000000

x ^ sb 00000000000000000001nnnnnnnnnnnn
.. - sb 00000000000000000000nnnnnnnnnnnn

int sign_ext(int val, int bits)
{

int high = 1 << (bits-1);
return (val ^ high) - high;

} Gabriel Laskar (EPITA) CAAL 2015 363 / 378

CPU-aware optimizations Examples Power of two detection

10: CPU-aware optimizations

Rationale

Examples
abs()
Sign extension
Power of two detection
Mask merging

Code readability guidelines

Gabriel Laskar (EPITA) CAAL 2015 364 / 378

CPU-aware optimizations Examples Power of two detection

Power of two
Properties

I Powers of two have only one “1” bit
I Substracting 1 from a power of two flips the only “1”

Examples:
I 1110010 - 1 = 1110001
I 0100000 - 1 = 0011111

I Lower bits up to the lowest 1 get flipped
I Other bits stay the same

int is_pow2(int n)
{

return !(n & (n - 1));
}

Gabriel Laskar (EPITA) CAAL 2015 365 / 378

CPU-aware optimizations Examples Power of two detection

Power of two
Properties

I Powers of two have only one “1” bit
I Substracting 1 from a power of two flips the only “1”

Examples:
I 1110010 - 1 = 1110001
I 0100000 - 1 = 0011111

I Lower bits up to the lowest 1 get flipped
I Other bits stay the same

int is_pow2(int n)
{

return !(n & (n - 1));
}

Gabriel Laskar (EPITA) CAAL 2015 365 / 378

CPU-aware optimizations Examples Power of two detection

Power of two
Properties

I Powers of two have only one “1” bit
I Substracting 1 from a power of two flips the only “1”

Examples:
I 1110010 - 1 = 1110001
I 0100000 - 1 = 0011111

I Lower bits up to the lowest 1 get flipped
I Other bits stay the same

int is_pow2(int n)
{

return !(n & (n - 1));
}

Gabriel Laskar (EPITA) CAAL 2015 365 / 378

CPU-aware optimizations Examples Mask merging

10: CPU-aware optimizations

Rationale

Examples
abs()
Sign extension
Power of two detection
Mask merging

Code readability guidelines

Gabriel Laskar (EPITA) CAAL 2015 366 / 378

CPU-aware optimizations Examples Mask merging

Mask merging

01234567

where_0 1 1 1 0 1 0 0 0
where_1 1 0 0 0 1 1 1 0

mask 0 0 1 1 1 1 0 0

result 1 1 0 0 1 1 0 0

int mask_merge(int mask, int where_0, int where_1)
{

return (mask & where_1) | (~mask & where_0);
}

Gabriel Laskar (EPITA) CAAL 2015 367 / 378

CPU-aware optimizations Examples Mask merging

Mask merging

01234567

where_0 1 1 1 0 1 0 0 0
where_1 1 0 0 0 1 1 1 0

mask 0 0 1 1 1 1 0 0

result 1 1 0 0 1 1 0 0

int mask_merge(int mask, int where_0, int where_1)
{

return (mask & where_1) | (~mask & where_0);
}

Gabriel Laskar (EPITA) CAAL 2015 367 / 378

CPU-aware optimizations Examples Mask merging

Mask merging
Less instructions

01234567

where_0 1 1 1 0 1 0 0 0
where_1 1 0 0 0 1 1 1 0

where_0 ^ where_1 0 1 1 0 0 1 1 0

mask 0 0 1 1 1 1 0 0

(w0 ^ w1) &mask 0 0 1 0 0 1 0 0

((w0 ^ w1) &mask) ^ w0 1 1 0 0 1 1 0 0

int mask_merge(int mask, int where_0, int where_1)
{

return ((where_0 ^ where_1) & mask) ^ where_0;
}

Gabriel Laskar (EPITA) CAAL 2015 368 / 378

CPU-aware optimizations Examples Mask merging

Mask merging
Less instructions

01234567

where_0 1 1 1 0 1 0 0 0
where_1 1 0 0 0 1 1 1 0

where_0 ^ where_1 0 1 1 0 0 1 1 0

mask 0 0 1 1 1 1 0 0

(w0 ^ w1) &mask 0 0 1 0 0 1 0 0

((w0 ^ w1) &mask) ^ w0 1 1 0 0 1 1 0 0

int mask_merge(int mask, int where_0, int where_1)
{

return ((where_0 ^ where_1) & mask) ^ where_0;
}

Gabriel Laskar (EPITA) CAAL 2015 368 / 378

CPU-aware optimizations Examples Mask merging

Mask merging
Less instructions

01234567

where_0 1 1 1 0 1 0 0 0
where_1 1 0 0 0 1 1 1 0

where_0 ^ where_1 0 1 1 0 0 1 1 0

mask 0 0 1 1 1 1 0 0

(w0 ^ w1) &mask 0 0 1 0 0 1 0 0

((w0 ^ w1) &mask) ^ w0 1 1 0 0 1 1 0 0

int mask_merge(int mask, int where_0, int where_1)
{

return ((where_0 ^ where_1) & mask) ^ where_0;
}

Gabriel Laskar (EPITA) CAAL 2015 368 / 378

CPU-aware optimizations Examples Mask merging

Mask merging
Less instructions

01234567

where_0 1 1 1 0 1 0 0 0
where_1 1 0 0 0 1 1 1 0

where_0 ^ where_1 0 1 1 0 0 1 1 0

mask 0 0 1 1 1 1 0 0

(w0 ^ w1) &mask 0 0 1 0 0 1 0 0

((w0 ^ w1) &mask) ^ w0 1 1 0 0 1 1 0 0

int mask_merge(int mask, int where_0, int where_1)
{

return ((where_0 ^ where_1) & mask) ^ where_0;
}

Gabriel Laskar (EPITA) CAAL 2015 368 / 378

CPU-aware optimizations Code readability guidelines

10: CPU-aware optimizations

Rationale

Examples

Code readability guidelines

Gabriel Laskar (EPITA) CAAL 2015 369 / 378

CPU-aware optimizations Code readability guidelines

Code readability

If you ever code with this kind of hack
I always create functions with explicit name and prototype
I eventually document the intended behavior
I may use a static inline

int abs(int x);
int sign_ext(int val, int bits);
int is_pow2(int n);
int mask_merge(int mask, int where_0, int where_1);

Gabriel Laskar (EPITA) CAAL 2015 370 / 378

Multi-/Many-core, heterogeneous
systems

Part XI

Multi-/Many-core, heterogeneous systems

Gabriel Laskar (EPITA) CAAL 2015 371 / 378

Multi-/Many-core, heterogeneous
systems Topology evolution

11: Multi-/Many-core, heterogeneous systems

Topology evolution

Challenges

Gabriel Laskar (EPITA) CAAL 2015 372 / 378

Multi-/Many-core, heterogeneous
systems Topology evolution

History of hardware topologies

Video

Floppy

Serial

Keyboard

Sound

Network Hard Disk

RAM

CPU

Gabriel Laskar (EPITA) CAAL 2015 373 / 378

Multi-/Many-core, heterogeneous
systems Topology evolution

History of hardware topologies

Floppy

Serial

BridgeBridge

VideoNetwork

Hard DiskSound

RAM

Keyboard

CPU

Gabriel Laskar (EPITA) CAAL 2015 373 / 378

Multi-/Many-core, heterogeneous
systems Topology evolution

History of hardware topologies

Floppy

Serial

BridgeBridge

VideoNetwork

Hard DiskSound

CPU CPU

RAM

Keyboard

Gabriel Laskar (EPITA) CAAL 2015 373 / 378

Multi-/Many-core, heterogeneous
systems Topology evolution

History of hardware topologies

CPU CPU

Floppy

Serial

BridgeRAM

BridgeBridge

Network

Hard DiskSound

Video

USB

Keyboard

Gabriel Laskar (EPITA) CAAL 2015 373 / 378

Multi-/Many-core, heterogeneous
systems Topology evolution

History of hardware topologies

CPU CPU

BridgeRAM Video

Bridge

ATA

Net

USB

Sound

Floppy

Kbd

Mouse

PCI

USB

Serial

Gabriel Laskar (EPITA) CAAL 2015 373 / 378

Multi-/Many-core, heterogeneous
systems Topology evolution

History of hardware topologies

CPU CPU

BridgeRAM Video

Bridge

ATA

Net

USB

Sound

Floppy

Kbd

Mouse

PCI

USB

SATA

Wlan

SerialSD

Gabriel Laskar (EPITA) CAAL 2015 373 / 378

Multi-/Many-core, heterogeneous
systems Topology evolution

History of hardware topologies

BridgeRAM

CPU

Many core

CPU

Many core

Bridge

ATA

Net

USB

Sound

Floppy

Kbd

Mouse

PCI

USB

SATA

Wlan

SerialSD

Video

PCI−e

Gabriel Laskar (EPITA) CAAL 2015 373 / 378

Multi-/Many-core, heterogeneous
systems Topology evolution

History of hardware topologies

Bridge

CPU

Many core

CPU

Many core
RAM RAM

Video

Bridge

Net

USB

Sound

PCI

USB

SATA

Wlan

SD

PCI−e

PCI−e

ATA Floppy

Kbd

Mouse

Serial

Gabriel Laskar (EPITA) CAAL 2015 373 / 378

Multi-/Many-core, heterogeneous
systems Topology evolution

Future of hardware topologies?

USB

Bridge

Net

USB

Sound

SATA

Wlan

SD

ATA Floppy

Kbd

Mouse

Serial

PCI

Video

CPU

Many core

CPU

Many core

CPU

Many core

CPU

Many core

CPU

Many core

CPU

Many core

RAMRAM

RAMRAM

RAMRAM

GPGPUGPGPU

GPGPUGPGPU

GPGPUGPGPU

Gabriel Laskar (EPITA) CAAL 2015 374 / 378

Multi-/Many-core, heterogeneous
systems Topology evolution

Hardware topologies
Observations

Busses don’t scale
I Bandwidth is shared among connected peers
I They need rest cycles between elections

We don’t have busses any more
I We use networks (QPI, HyperTransport)
I This forbids snooping
I Coherence has to be done explicitely

Gabriel Laskar (EPITA) CAAL 2015 375 / 378

Multi-/Many-core, heterogeneous
systems Topology evolution

NUMA
Observations

I There are more and more cores
I Memory gets closer to the cores
I Memory connections get distributed among cores
I Systems become NUMA

Gabriel Laskar (EPITA) CAAL 2015 376 / 378

Multi-/Many-core, heterogeneous
systems Challenges

11: Multi-/Many-core, heterogeneous systems

Topology evolution

Challenges

Gabriel Laskar (EPITA) CAAL 2015 377 / 378

Multi-/Many-core, heterogeneous
systems Challenges

Some scalability bottlenecks

Coherent shared-memory systems
I are hard to design
I dont scale well
I get slower with the load

NUMA systems
I are hard to program for
I are not well supported in all OSes

Uncoherent shared-memory systems are not ready for prime-time yet

Gabriel Laskar (EPITA) CAAL 2015 378 / 378

	Introduction
	Problem definition
	Outline

	Processor architecture
	Overview
	Inside the processor
	Processor units
	Instructions
	Instruction flow
	Pipeline processor
	CISC & RISC architectures

	Memory
	Memories
	Memory types
	Access examples

	Memory accessing modes
	Immediate addressing
	Absolute addressing
	Register indirect addressing
	Complex addressing

	Alignment
	Memory access alignment
	Structure alignment
	packed structures

	Endianness
	Different designs, different paradigms
	Explaination
	Demo

	Caches

	Memory mapping
	Address space
	Definition
	Translation

	Computer address spaces
	Definition
	Usual address spaces

	Computer address space translation
	Segmentation
	Pagination

	MMU patterns
	Memory protection
	Privileges
	Process switching
	Memory sharing
	Copy On Write
	Page swapping
	mmap()

	Execution flow
	Branch, function calls
	Branch principle
	Pipeline considerations

	Function calls
	Principles
	Argument passing
	Call conventions

	Handling events
	Events
	System calls
	Faults
	Hardware interruptions

	Multitasking

	Object file formats
	Build process
	Overview
	Development tools
	Analysis tools

	Binary formats
	Simple binary formats
	How about code reuse and splitting
	Linking
	File formats history

	Executable code loading
	Binary file loading
	Loading process
	Dynamic libraries

	Assembly programming
	Introduction
	Pure assembly files
	Anatomy of assembly code
	Examples

	Inline Assembly in C
	Presentation
	Simple examples
	Syntax
	Complex examples
	Named values
	Quizz

	Focus on x86
	x86 story
	Timeline
	x86 architecture
	Instruction set

	Focus on RISC processors
	History
	Some instruction sets
	Mips
	SPARC
	PPC
	ARM

	CPU-aware optimizations
	Rationale
	Examples
	abs()
	Sign extension
	Power of two detection
	Mask merging

	Code readability guidelines

	Multi-/Many-core, heterogeneous systems
	Topology evolution
	Challenges

