
x86 : Multi Core
Gabriel Laskar <gabriel@lse.epita.fr>



Multi Core

● bsp/ap initialization
● mptables, madt
● idt, ipi, lapic, ioapic
● impact on kernel code
● Kernel Lock
● cache coherency



x86_64 Initialization

● Disable paging
● Set the PAE enable bit in %cr4
● Load %cr3 with the physical address of the 

PML4
● Enable long mode by setting the EFER.LME 

flag in MSR 0xC0000080
● Enable paging



x86_64 : Are we done yet ?

● We are still in compatibility mode, with 32-
bit code
○ reload segment selector for %cs with

■ DB = 0
■ L = 1

● Now we can relocate all other tables (idt, 
gdt, tss...)



Interrupt Routing

● If I have multiple core, to which core the 
interrupt are delivered ?

● We need a new mechanism that enable 
customisation for interrupt routing



LAPIC

● memory mapped (starting at 0xfee00000)
● Receive interrupts from multiple sources

○ Locally connected I/O devices (Local & External)
○ Inter-processor interrupts (IPIs)
○ APIC timer, PMC, Thermal, internal errors



IOAPIC

● 83093AA
● at least 24 programmable interrupts
● memory mapped
● more flexible on priorities
● usually connected to the LAPICs



IRQ Routing



Talking to another core : IPI

● In the LAPIC
● can send unicast or broadcast requests
● Used for :

○ flushing TLBs
○ flushing Caches
○ power up or down another core
○ arbitrary messages



Caching

● Caches are either shared (L2)
● or specific for a core (L1)
● Synchronisation must be done at the 

hardware level



Discover Multiple cores

● How many cores do I have ?
● Where is located my APICs ?
● How the interrupt are configured ?



Multiprocessor Specification

● Old deprecated interface
● Easy to use
● But first we must find it !



● Find the MP Floating Pointer Structure
○ In the first kilobyte of the EBDA
○ In the first kilobyte of system base memory (639k 

→ 640k, or 511k → 512k)
○ In the BIOS ROM address space 0xf0000 and 

0xffffff
● Search for the Magic Value "_MP_"

Where are my MP tables



What’s in it ?

● Processor
● Bus (PCI, ISA, VESA, etc...)
● I/O APIC configurations
● I/O Interrupts assignment
● Local Interrupts assignment



ACPI

● provides an open standard for device 
configuration and power management

● Replace 
○ Advanced Power Management
○ MultiProcessor Specification
○ Plug and Play BIOS Specification



ACPI Tables

● Root System Description Pointer (RSDP)
● System Description Table Header
● Root System Description Table (RSDT)
● Fixed ACPI Description Table (FADT)
● Differentiated System Description Table (DSDT)
● Multiple APIC Description Table (MADT)
● Extended System Description Table (XSDT)
● ...



Root System Description Pointer

● Contains address of RSDT and XSDT
● Still in placed at random point in memory
● Magic "RSD PTR "



Root System Description Table

● Header with information about vendor
● Contain addresses to other tables
● XSDT is the same table but with 64-bit 

addresses



Fixed ACPI Description Table

● Define ACPI information vital to an ACPI-
compatible OS

● Registers
● Pointer to DSDT
● Contains also various information (how to 

enable or disable ACPI)



Differentiated System Description 
Table

● Contains AML Code blocks
● AML is a generic bytecode
● Describe Hardware configuration
● Contains calls for Power Management states



Multiple APIC Description Table

● APIC structures
● Processor descriptions



Multi Core initialization

● Parse the MP tables to find the other APICs.
● initializes the bootstrap processor's local APIC.
● send Startup IPIs to each other cores with the address 

of trampoline code.
● trampoline code initializes the AP's to protected mode
● The BSP can initialize the IO APIC into Symmetric IO 

mode, to allow the AP's to begin to handle interrupts.
● The OS continues further initialization, using locking 

primitives as necessary.



Changes in the OS

● kind of like multi-threaded application
● We need to care about locking
● And never stop the other cores



Per-cpu context

● Per-cpu context
○ Most of the control structures are per-cpu
○ Some can be shared, for example GDT

● Per-cpu variables
○ we can use %gs or %fs to implement per-cpu pages.



Changes in the OS

● Locking strategies
○ Giant Lock (Big Kernel Lock)
○ Fine grained lock

● Algorithms
○ Scheduling
○ Memory allocation
○ Handling of kernel resources



Exercises

● write a kernel that dumps the mptables
● write a kernel that dumps the relevant ACPI 

tables


