X86 : Multi Core

Gabriel Laskar <gabriel@Ise.epita.fr>

sssss



Multi Core

bsp/ap initialization
mptables, madt

idt, ipi, lapic, ioapic
impact on kernel code
Kernel Lock

cache coherency

SSSSS



x86 64 Initialization

e Disable paging

e Set the PAE enable bitin %cr4

e Load %cr3 with the physical address of the
PML4

e Enable long mode by setting the EFER . LME
flag in MSR 0xC0000080

e Enable paging

SSSSS



x86_64 : Are we done yet ?

e We are still in compatibility mode, with 32-

bit code

o reload segment selector for %cs with
m DB=0
m L=1

e Now we can relocate all other tables (idt,

dt, tss...)

SSSSSS



Interrupt Routing

e If I have multiple core, to which core the
interrupt are delivered ?

e We need a new mechanism that enable
customisation for interrupt routing

SSSSS



LAPIC

e memory mapped (starting at 0OxtTee00000)

e Receive interrupts from multiple sources

o Locally connected I/0 devices (Local & External)
o Inter-processor interrupts (IPIs)
o APIC timer, PMC, Thermal, internal errors

SSSSS



IOAPIC

83093AA

at least 24 programmable interrupts
memory mapped

more flexible on priorities

usually connected to the LAPICs

SSSSS



IRQ Routing

Processor #1 Processor #2 Processor #3 Processor #4
CPU CPU CPU CPU
Local APIC Local APIC Local APIC Local APIC
Interrupt IPls Interrupt IPls Interrupt IPls Interrupt IPls
Messages Messages Messages Messages
Interrupt 3-wire APIC Bus
Messages

External —>
Interrupts |—> /0 APIC

System Chip Set l@m

System




Talking to another core : IPI

e In the LAPIC

e can send unicast or broadcast requests

e Used for:
o flushing TLBs
flushing Caches
power up or down another core
arbitrary messages

O O O

SSSSS



Caching

e Caches are either shared (L2)

e or specific for a core (L1)

e Synchronisation must be done at the
hardware level

SSSSS



Discover Multiple cores

e How many cores do I have ?
e Where is located my APICs ?
e How the interrupt are configured ?

SSSSS



Multiprocessor Specification

e Old deprecated interface
e Easyto use
e But first we must find it!

SSSSS



Where are my MP tables

e Find the MP Floating Pointer Structure
o In the first kilobyte of the EBDA

o In the first kilobyte of system base memory (639k
— 640k, or 511k — 512k)

o Inthe BIOS ROM address space 0xf0000 and
Oxffffff

e Search for the Magic Value "_MP_"

SSSSS



What's in it ?

Processor

Bus (PCI, ISA, VESA, etc...)
I/0 APIC configurations

I/0 Interrupts assignment
Local Interrupts assignment

SSSSS



ACPI

e provides an open standard for device
configuration and power management

e Replace

o Advanced Power Management
o MultiProcessor Specification
o Plug and Play BIOS Specification

SSSSS



ACPI Tables

Root System Description Pointer (RSDP)
System Description Table Header

Root System Description Table (RSDT)

Fixed ACPI Description Table (FADT)
Differentiated System Description Table (DSDT)
Multiple APIC Description Table (MADT)
Extended System Description Table (XSDT)

SSSSS



Root System Description Pointer

e Contains address of RSDT and XSDT
e Still in placed at random point in memory
e Magic "RSD PTR "

SSSSS



Root System Description Table

e Header with information about vendor
e Contain addresses to other tables
e XSDT is the same table but with 64-bit

addresses

SSSSS



Fixed ACPI Description Table

e Define ACPI information vital to an ACPI-
compatible OS

e Registers

e Pointer to DSDT

e Contains also various information (how to

enable or disable ACPI)

SSSSS



Differentiated System Description
Table

Contains AML Code blocks

AML is a generic bytecode

Describe Hardware configuration

Contains calls for Power Management states

SSSSS



Multiple APIC Description Table

e APIC structures
e Processor descriptions

SSSSS



Multi Core initialization

e Parse the MP tables to find the other APICs.

e initializes the bootstrap processor's local APIC.

e send Startup IPIs to each other cores with the address
of trampoline code.

e trampoline code initializes the AP's to protected mode

e The BSP can initialize the IO APIC into Symmetric IO
mode, to allow the AP's to begin to handle interrupts.

e The OS continues further initialization, using locking

primitives as necessary. s 2

ur
yyyyyyy



Changes in the OS

e kind of like multi-threaded application
e We need to care about locking
e And never stop the other cores

SSSSS



Per-cpu context

e Per-cpu context

o Most of the control structures are per-cpu
o Some can be shared, for example GDT

e Per-cpu variables
o we can use %gs or %fs to implement per-cpu pages.

SSSSS



Changes in the OS

e Locking strategies
o Giant Lock (Big Kernel Lock)
o Fine grained lock

e Algorithms

o Scheduling
o Memory allocation
o Handling of kernel resources

SSSSS



Exercises

e write a kernel that dumps the mptables
e write a kernel that dumps the relevant ACPI
tables

SSSSS



