
x86 : Initialization &
Devices

Gabriel Laskar <gabriel@lse.epita.fr>

● Correction & comments about exercises
● Project Presentation
● Context switching in a kernel

Before the lesson

x86 power on

● Chips self initialize
● Cpu initialization
● Firmware starting

○ remap itself in memory
○ perform sanity checks (POST)
○ iterate through devices for initialization
○ launch boot code

● Boot code launch OS

BIOS

● 16-bit code
● old, ancient way
● boot MBR partitions (0x55aa)
● user-api is interrupts

BIOS Interrupts

● int $0x10 : Video Services
● int $0x11 : Equipment list
● int $0x12 : lowmem size
● int $0x13 : Disk Services
● int $0x14 : Serial port Services
● int $0x15 : Misc services (0xe820, ...)
● ...

EFI

● 32 or 64 bit code
● New “modern” way
● New partition format
● Interface based api

Example

#include <efi.h>

EFI_STATUS main(EFI_HANDLE ImageHandle,
 EFI_SYSTEM_TABLE *SystemTable)
{
 SystemTable->ConOut->Outputstring(
 SystemTable->ConOut, L”Hello World\r\n”);
 return EFI_SUCCESS;
}

Different types of Applications

● Applications
● Boot services
● Runtime services
● Drivers

Booting linux

● Linux can boot from multiple modes
○ 16bit
○ 32bit
○ 64bit
○ efi (32 or 64)

● struct boot_params

Devices

● Registers accessible to CPU :
○ MMIO
○ PIO (in, out)

● Access to Memory (DMA)
● Interrupts (irq, msi)

Serial Port

● 8250 compatible (or 16550)
● base port on 0x3f8 (for COM1)
● IRQ 4
● ports mapped onto 8250 registers

What devices are available ?

● We need some way to discover devices
● When devices are on a bus there is (usually)

a way to have their description

PCI Bus

● Configuration space accessed through IO
Ports

● CONFIG_ADDRESS (0xcf8)
● CONFIG_DATA (0xcfc)

PCI Address Structure

PCI Header

ACPI

