
Tartiflette:
Snapshot fuzzing with KVM and libAFL

Tanguy Dubroca, César Belley

Help me

Fuzzing ?

2

libAFL ??

KVM ???

Tartiflette ????

Fuzzing 101

3

● Automatically tests robustness of programs
● We provide an input to the program:

○ Random
○ Corrupted (mutated valid input)
○ Generated (ex: from a grammar)

● We observe the effects on the execution:
○ Nothing (99% of the time)
○ Crash (very interesting)

● Not limited to memory corruption:
○ Differential fuzzing
○ Web fuzzing (xss)
○ Only requirement -> some form of feedback

Blackbox fuzzing

4

● The simplest type of fuzzing...
○ Very low feedback (crash oracle)
○ No need for source code !
○ Fast to build
○ ./my_prog < /dev/urandom

● .. but it works !
○ 3DS smb bug -> RCE [1]

https://youtu.be/WNUsKx2euFw?t=671

Whitebox fuzzing

5

● Most complicated type of fuzzing:
○ Makes use of symbolic execution
○ Can solve complex constraints
○ With or without source code
○ Slow !

● But:
○ Can be combined with other fuzzing techniques

● The most common technique:
○ AFL, libfuzzer, Honggfuzz, etc…
○ Genetic algorithm using coverage*
○ With or without source code
○ Fast and efficient !
○ Good track record

Greybox fuzzing

6

● Running programs snapshots:
○ Process/VM memory
○ Process/VM CPU context
○ Metadata (coverage, symbols, opened files, etc…)

● Flexibility:
○ Fuzzing from any point of execution of a program
○ Userland, Kernel, Hypervisor
○ Windows kernel fuzzing on Linux
○ Fuzz another architecture is possible (emulators)

● But:
○ Requires a lot of boilerplate (syscall emulation layer)
○ Need for low level system knowledge
○ Hard to debug

Snapshot fuzzing

7

● Processus:
○ Place the input data in memory
○ Run the snapshot until a chose exit point
○ Handle the coming events during runtime (VMExit)

■ Errors
■ Syscalls emulations
■ Instrumentation Hooks

○ Restore full VM state after execution
■ Gives deterministic execution

○ Give feedback to fuzzer

Snapshot fuzzing

8

● First version released in 2014
● Impressive track record:

○ Firefox, OpenSSL, sqlite, VLC, etc…
● Easy to use
● Uses coverage for feedback:

○ With source: compile-time instrumentation
○ Without source: instrumentation with QEMU

● But:
○ Monolithic (new feature == fork)

■ WinAFL, kAFL, TriforceAFL, afl-pt, ...
○ Not optimized (too many syscalls)
○ Parallel fuzzing is a hack
○ Not actively maintained

■ AFL++ is a great alternative

AFL

9

● First version release in 2021
● By the AFL++ authors
● Framework/library for fuzzing:

○ Extremely composable and flexible architecture
○ Designed for performance
○ Built for parallel and scalable fuzzing

● But:
○ Unstable API
○ Lack of documentation
○ Requires a lot of boilerplate code

libAFL

10

● Kernel Virtual Machine
● Linux kernel hypervisor
● Exposes a userland interface:

○ VCPU manipulation
○ Memory manipulation
○ Interruption handling
○ Low level API

● Used as backend by other hypervisors:
○ QEMU/KVM
○ VirtualBox backend KVM

KVM

11

libAFL + KVM

Tartiflette

12

=

13

● Tartiflette-VM
○ Abstraction layer over the KVM api
○ Provides virtual memory handling,

cpu access, exception forwarding
and state reset

● Tartiflette-executor
○ libAFL executor component using

Tartiflette-VM
○ Provides coverage collection, code

hooking, syscall hooking, timeout
handling

Tartiflette: Overview

● Tartiflette-vm exposes virtual memory
handling apis (mmap, read, write):

○ Much like Unicorn
● Paging is implemented by the host
● Advantages:

○ Lower memory consumption
○ More flexible api (mmap)

● Disadvantages:
○ Does not expect guest code to meddle with

physical memory
■ Tricky to fuzz kernel code

○ Cannot handle context switches
(userland/kernel)

■ CPU context in ring0
■ All memory is mapped in ring0

Tartiflette-vm: Memory handling

14

Tartiflette-vm: KVM setup

15

● Segments selectors:
○ 64 bits segments

● Controls registers
○ Paging

● Model specific registers:
○ 64 bits modes

Tartiflette-vm: CPU setup

16

● GDT
○ NULL entry (as per the spec)
○ 64 bit dumb segment descriptor
○ TSS entry
○ Sets up GDTR

● IDT Handlers
○ Forwards guest exceptions to the host

● IDT
○ IDT entries pointing to corresponding handlers
○ Sets the IST #1 as the interrupt stack to use
○ Sets up IDTR

● TSS
○ Sets up the first IST entry to point to the interrupt

stack
● Interrupt stack

○ Separate stack to use during CPU exceptions

17

Tartiflette-vm: Exception handling setup

18

● Guest exceptions do not generate
VMExits

○ Save for breakpoints with the
VM_GUESTDBG_ENABLE and
KVM_GUESTDBG_USE_SW_BP KVM

● Solution
○ Writes the trampoline entries to the IDT

Handlers page, forwarding exceptions
through a HLT VMExit

○ Point the IDT entries to the relevant
trampolines

Tartiflette-vm: Exception forwarding

19

● Used to reset a VM after a fuzz case
for another one

● Full CPU reset:
○ General purpose registers
○ Special registers (segments, crX)
○ Model specific registers (fs/gs)

● Differential memory reset:
○ Uses KVM_LOG_DIRTY bits bitmap to

only reset dirty physical guest pages

Tartiflette-vm: State reset

20

● Let KVM run the VM’s VCPU
○ Until the first VCPU exit

● Get CPU full state
○ General purpose registers
○ Special registers (segments, crX)

● Handle the VCPU exit:
○ Debug: Forward breakpoint
○ Halt outside hypercall region: Forward

breakpoint Halt
○ Halt inside hypercall region:

■ Get the exception frame
■ Reset execution before interruption
■ Forward interruption:

● PageFault
● Syscall: InvalidOpcode
● ...

Tartiflette-vm: Run loop

● Binary file:
○ All dumped memory mappings

● JSON file:
○ CPU context
○ Mappings

■ Virtual start and end
addresses

■ Page permissions
■ Physical offset into the

binary file
■ Owning file (if any)

○ Symbols (if any)

Tartiflette-vm: Snapshot format

21

● Implements the fuzzing runtime:
○ Harness:

■ Writes the input and sets up the Vm
state

○ Coverage handling
■ Uses breakpoints on basic blocks

○ Timeout handling
○ Hook handling
○ State reset

● Exposes instrumentation apis:
○ Code hooks
○ Syscall hooks
○ Coverage hooks

Tartiflette-executor: Overview

22

● Code hooks:
○ For instrumentation
○ Returns whether the guest should

continue, stop or crash
● Coverage hook:

○ For coverage logging (ex: lighthouse
mod offset trace)

○ Called when a basic block is first
encountered

● Syscall hooks:
○ For syscall emulation
○ Returns whether the execution should

stop

Tartiflette-executor: Hooks

23

● KVM has no built-in timer to kick
the VM out of virtualization

● We use alarm:
○ Kicks the kvm thread to handler
○ ioctl(KVM_RUN, …) returns EINTR -> we

exit with timeout
○ If timeout occurred in vmexit handling,

we check the starting time
● Alarm only offers a granularity in

seconds :(

Tartiflette-executor: Timeout

24

POC

25

QuickJS

● Released in 2020
● Javascript Interpreter
● Project both small and complex:

○ Perfect for testing a fuzzer !
● Code not battle tested:

○ Bugs and exploits were found for older versions
■ http://rce.party/cracksbykim-quickJS.nfo

○ Potential to find bugs !

QuickJS: Overview

26

http://rce.party/cracksbykim-quickJS.nfo

● We want to capture a snapshot
before parsing and exec

● qjs -e <expr>
○ Executes the given expression and

exits
○ Internally calls the eval_buf function

● With gdb:
○ Breakpoint at eval_buf and dump the

program state

QuickJS: Capturing a snapshot

27

QuickJS: Capturing a snapshot

28

1. Load Vm from snapshot:
a. Parse Snapshot information
b. Load snapshot into a fresh VM

2. Allocate space for the Input
3. Setup the syscall emulation

layer:
a. To emulate syscalls triggered in

code running in the vm
b. Allocate space for possible

returned resources accessible in
the vm

QuickJS Fuzzer: VM Setup

29

QuickJS Fuzzer: libAFL Setup

30

● Create the standard
components:

○ Observer:
■ Channel through which

collected events can be
queried

○ Feedback:
■ Determine whether input

is interesting, using
observers data.

○ State
○ Fuzzer

QuickJS Fuzzer: Tartiflette-Executor

31

● Take an input
● Run the target with it
● Inside a Tartiflette-VM!

● A disassembler can be used to
dump basic block addresses for
coverage

● The snapshot info json file can
give the base address of a
module

● This gives flexibility without
having to hardcode addresses in
the fuzzer

QuickJS Fuzzer: Coverage points

32

● Called on each syscall
● src/sysemu.rs implements some

useful standard syscalls:
○ mmap
○ munmap
○ exit_group

● Enough to make calls to malloc
work and to stop the program
cleanly on errors

QuickJS Fuzzer: Syscall hook

33

● Called on each new basic block
discovered

● Useful for generating traces (for
tools such as lighthouse)

QuickJS Fuzzer: Coverage hook

34

QuickJS Fuzzer: Coverage hook

35Coverage trace loaded in lighthouse

1. Load corpus from directory
2. Prepares the input

transformation stages:
a. We only use a standard byte

mutator
b. No pre/post preprocessing stages

3. Runs the fuzzer !

QuickJS Fuzzer: Launching the fuzzer

36

● Usual javascript fuzzing techniques:
○ Dictionary (AFL, Jackalope)
○ Grammar fuzzing (domato, dharma)
○ Black Magic (Fuzzilli)

● The standard libAFL mutator operates on
bytes.

○ Bad for text based inputs
○ Bad for highly structured inputs
○ Bad for javascript fuzzing

● How to generate javascript code from
bytes ?

QuickJS Fuzzer: Javascript fuzzing

37

● Taken from the USENIX ‘21 - Token-Level Fuzzing
presentation

○ Augmented dictionary fuzzing
● Encodes javascript tokens as byte arrays:

○ Encoded input can be mutated by a classic byte mutator
○ Input is decoded back to javascript before being sent to the program

● Advantages:
○ Quick to build
○ Low cost of maintenance

● Disadvantages:
○ May not go as deep as grammar based fuzzers
○ High chance of syntactically invalid inputs

QuickJS Fuzzer: Token-Level Fuzzing

38

https://www.youtube.com/watch?v=wkmvXP0wnfk
https://www.youtube.com/watch?v=wkmvXP0wnfk

● Code normalization:
○ Done using a javascript obfuscator

and custom variable name
dictionary

● Tokenization:
○ Done using the esprima js parser

● Output:
○ Encoded javascript code (per input)
○ Mapping of javascript tokens to

their indices (shared across all
inputs)

QuickJS Fuzzer: Token-Level Fuzzing (encoding)

39

● Inputs:
○ Encoded javascript code
○ Token mapping

● Decoding:
○ Map token indices to their string

representation
● Stringification:

○ Concat everything
● Output:

○ Javascript code

QuickJS Fuzzer: Token-Level Fuzzing (decoding)

40

1. Load token map
2. Decode token to strings
3. Stringify
4. Write the input to the VM

memory

QuickJS Fuzzer: Token-Level Fuzzing (harness)

41

DEMO

Tartiflette

42

Questions ?

Tartiflette

43

Links

44

● Repository:
○ https://github.com/MattGorko/Tartiflette

https://github.com/MattGorko/Tartiflette

