
Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt Performing open-syscall surgery on SSHd with

eBPF as a scalpel

Martin Schmidt

EPITA

November 06, 2021

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 1 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

What is eBPF

eBPF – ebpf.io

eBPF is a revolutionary technology with origins in the Linux
kernel that can run sandboxed programs in an operating system
kernel. It is used to safely and efficiently extend the capabilities
of the kernel without requiring to change kernel source code or
load kernel modules.

Tracing with eBPF

eBPF is used a lot for tracing and monitoring

syscalls

internal kernel functions

user program functions

hardware events:

cache-misses, branch-misses, . . .

and more. . .

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 2 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

How do I get started tracing with eBPF ?

You could write eBPF bytecode by hand

Could compile your eBPF script with linux in-tree (uses
clang -target bpf)

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 3 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Using front-ends for eBPF

The main and recommended front-ends for BPF tracing
are BCC and bpftrace

bpftrace

for one-liners and short scripts.

awk-like syntax, quick and easy

bcc

for complex tools and daemons

write the eBPF program (the probes) in C

Have a piece of python receiving events from probes

We’ll look at some examples using bpftrace

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 4 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

uprobe/uretprobe

Definition

uprobe instruments the beginning of a user-level function’s
execution, and uretprobe instruments the end (its return).

Example: tracing readline in bash

uretprobe:/bin/bash:readline

{
time("%H:%M:%S ");

printf("%-6d %s\n", pid, str(retval));

}

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 5 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

kprobe/kretprobe

Example: counting calls to vfs related functions

kprobe:vfs *

{
@[func] = count();

}

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 6 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Example: Trace tcp connect()s with kprobe

kprobe:tcp connect

{
$sk = ((struct sock *) arg0);

$inet family = $sk-> sk common.skc family;

if ($inet family == AF INET) {
$daddr = ntop($sk-> sk common.skc daddr);

$saddr = ntop($sk-> sk common.skc rcv saddr);

$lport = $sk-> sk common.skc num;

$dport = $sk-> sk common.skc dport;

$dport = ($dport >> 8)

| (($dport << 8) & 0x00FF00);

time("%H:%M:%S ");

printf("%-39s %-6d %-39s %-6d\n", $saddr, $lport,

$daddr, $dport);

}
}Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 7 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

tracepoint

Example: tracing calls to the openat syscall

tracepoint:syscalls:sys enter openat

/comm == "cat"/

{
printf("%s %s\n", comm, str(args->filename));

}

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 8 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Portability

How does the previous example work ?

How do we have the parameter’s type information ?

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 9 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

BTF to the rescue

BTF (BPF Type Format)

BPF Type Format, which provides struct information to avoid
needing Clang and kernel headers.

Figure:
/sys/kernel/debug/tracing/events/syscalls/sys enter openat/format

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 10 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Now what ?

Lots of cool examples but can we do anything cool/useful ?

My projects:

tracing sshd

ebpf firewall

maybe on-the-fly decryption in the future :eyes:

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 11 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

The subject

Playing around with cool looking examples is fun but. . .

We wanted something useful

Try the observability part of eBPF by tracing a program.

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 12 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

The target: OpenSSH’s sshd

The target: OpenSSH’s sshd

Especially sshd AuthorizedKeysCommand

AuthorizedKeysCommand

Specifies a program to be used to look up the

user's public keys.

The program must be owned by root,

not writable by group or others and

specified by an absolute path.

Arguments to AuthorizedKeysCommand accept

the tokens described in the TOKENS section.

If no arguments are specified then the

username of the target user is used.

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 13 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Why is this needed ?

There exists infrastructures where the
AuthorizedKeysCommand program is a bottleneck and
people want to log the time it took to execute.

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 14 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

First try (eBPF uprobes)

uprobe:/usr/bin/sshd:do authenticated

{
printf("[do authenticated (tid: %lu)]\n", tid);

}

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 15 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

First try (with symbols)

I just added symbols to my sshd, restarted

Started looking at the functions in sshd I would want to
trace

Found some interesting functions

do authenticated

Takes care of post-authentication

do cleanup

Cleans up once user session is finished

user key allowed

Checks if a user key is allowed (runs the
AuthorizedKeysCommand)

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 16 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

First try (symbols): what does a probe look like ?

int trace user key allowed(struct pt regs *ctx,

struct ssh *ssh,

struct passwd * user pwd) {
pid t pid = bpf get current pid tgid();

struct authentication auth = {};
// struct defined by the ebpf prog to store data

bpf probe read str(&auth.username,

sizeof(auth.username),

user pwd->pw name);

auth.start = bpf ktime get ns();

auth.end = 0;

auth.successful = 0;

auths.insert(&pid, &auth);

return 0;

}Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 17 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

First try (symbols)

trace sessions

/--\

| USERNAME | RECV (B) | SENT (B) | TIME (ms) |

| martin | 1343488 | 3342964 | 11171 |

| root | 4571136 | 16851732 | 10388 |

^C---/

trace authorized keyscommand

/--\

| USERNAME | SUCCESS | TIME TO AUTH |

| martin | 1 | 2011 |

| martin | 1 | 9370 |

| root | 0 | 2008 |

^C---/

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 18 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

First try (with symbols): conclusion

It works very well and can be extended but. . .

Shortcomings

I have included headers directly from sshd’s sources in
order to have parameter types

We can’t rebuild with symbols on the infrastructure being
debugged

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 19 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Second try

Life sucks

We can’t have symbols ;(

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 20 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Second try

Solution

Trace the syscalls

We can’t just stupidly trace all execve syscalls

Lots of noise from the user session (/bin/sh, . . .)

Log more stuff than just programs being executed

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 21 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Second try: settings goals

Goals

authentications

login of user

time & date

if it succeeded

ssh sessions

start time

end time

commands that were ran inside

arguments to the command
return value
duration

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 22 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Second try: getting the thing to work

I started by straceing sshd hoping I would see a magical
and useful pattern

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 23 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Second try: getting the thing to work

I had to dive into the source code

At first

I thought privsep was a special OpenBSD feature

So I ignored the related code. . .
And failed miserably. . .

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 24 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Second try (without privsep)

Figure: Flow without privsep

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 25 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Second try (without privsep)

Screenshot

sshd authorizedkeyscommand ran

{username="martin", duration ms=1010.226717}
sshd authorizedkeyscommand ran

{username="martin", duration ms=1007.266651}
sshd auth finished

{username="martin", success=1}

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 26 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Second try (with privsep)

I recompiled with privsep enabled

After careful reading and drawing. . .

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 27 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Second try: flow analyzed

Figure: sshd auth flow

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 28 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Second try: the result

DEMO TIME

to the gods of conferencs, plz work

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 29 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

Second try: conclusion

Works pretty well, I’m happy. Still works 1.5 years later even
though a bit hacky

Shortcomings

Can’t read all of argv because argc is unbounded

Getting the user

Depends on the AuthoziedKeysCommand config

If of the form: <program> (no arguments) user will be
argv[1]

Easy we know where it is

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 30 / 31

Performing
open-syscall
surgery on
SSHd with
eBPF as a
scalpel

Martin
Schmidt

I’m done

Questions ?

Martin Schmidt (EPITA) Performing open-syscall surgery on SSHd with eBPF as a scalpelNovember 06, 2021 31 / 31

