
Blind Date,

a journey into Blind ROP 

exploitation technique

Thomas Berlioz

LSE Winter Days

Nov. 6/7 2021



Blind Date

The LSE intern from Summer 2019 coded an 

online service to welcome new lab’ students. 

Legend says he hid a flag on the machine 

running the service… Prove the old heads 

you deserve your place by compromising the 

server using the remote service only.

• Originally a challenge from FCSC 2021

• No access to source code nor the compiled binary

• We want to get a shell on the server

The challenge



Understanding the service

Looks like an echo server, 2 possible vulnerabilities:

• format string attack

• buffer overflow



A format string bug?

• Well known vulnerability occurring with an unsafe 

usage of a printf function supporting formatting

• The code would look like this:



More like a buffer overflow…

• We can easily test by sending a formatting string which 

would leak the stack if there was an vulnerable printf call

Not a format string attack! Let’s check the overflow…



What’s a stack buffer overflow?

• Occurs when we do not check if the 

user input fits in the buffer it went in

• If there is no protection such as canary, 

we can overwrite data behind the buffer

• It means that we can take control of 

execution flow because the return address 

we jump on is located on the stack

RET is equivalent to POP RIP



Recon

• Increment input size until program crashes

• Check the protections:

• on the binary (PIE, canary) 

• on the server (ASLR)

Program crashes after 40 bytes

= (probably stack) buffer overflow



Recap

• x86-64 addresses = 64-bit executable running

• We always leak the same bytes which looks like an address:

• PIE off

• no canary

• The stack addresses are randomized = ASLR on

• Crash after 40 bytes, trash in buffer = char buffer[32];

• Does not print “ Bye! ” when it crashes = intermediate function

Ok cool bro, so what?



Return Oriented Programming

• Once we control the execution flow = we control RIP

• Use gadgets to execute instructions sequences from the binary itself 

and jump somewhere else using ret instruction

• We control the stack values with the stack buffer overflow!

For instance, this gadget allows the attacker to control RDI, which is the first argument 

in the x64 calling convention.



A visual representation

Ok cool bro, but...

We can’t locate the 

gadgets without the 

binary!



The stop gadget

• Most important gadget

• Essential to confirm we regain execution flow control during each step

In our case, we expect that there’s 

an address that, if we jump on it, 

produces the following output:

How do we find it?

- we fill the buffer and RBP

- then we overwrite the return address with an address X from the binary

- we loop until the address X produces the expected output (called reference)

Be careful, several addresses could produce this output!



The stop gadget

We know that, if we trigger the reference used for this 

stop gadget, it means we hit one of those addresses

We have a reliable way to 

know when we control RIP!



The attack plan

ASLR on:

 leak a libc address

 find the libc version

 get offsets for `/bin/sh` string and system function

 system(“/bin/sh”)

We need to control the first argument = RDI in x64 calling convention

Ok cool bro… But we still have no clue which 

gadgets we can find in the binary… Do we?



The BROP gadget

• The ultimate gadget

• Almost all binaries have it because it’s located at the end of 

`__libc_csu_init` which is part of the libc startup routine

• Easy to spot as it pops 6 values from the stack = very unlikely 

to get a false positive

Ok cool bro… But we can’t control RDI with it



PWN IS AWESOME

What if we jump on 0x401273... ?

We get a new gadget 

inside the BROP gadget!



Recap

Finding the BROP gadget means 

being able to control RDI and RSI 

= two first arguments of a function

To find it:

 overwrite RIP with the address we increment 

at each loop

 followed by 6 trash addresses that should be 

popped into RBX, RBP, R12, R13, R14 and R15 

if the address is the right one

 followed by our stop gadget loaded into RIP by 

the last `ret`

 if the address is the good one, we will get our 

reference in the output!



Let the hunt begin…

No false positive!

We can now control registers!



Here comes puts

• Quick reminder: we need to leak an address from the GOT to identify the libc

• Problem: we have no idea where the relocation table is located in the binary, 

and even if we knew it, we would have no idea which symbol we leak

• Solution: we control at least 2 arguments, we know puts is used, let’s try to 

leak its address in order to print whatever we want next!



Getting puts address

We can now call puts with any argument we want!

We can leak the whole binary to find interesting addresses!



Leaking the ELF

Actually a very simple part:

- we can call puts 

- with any argument we want

 Loop over the whole ELF addresses and call 

puts with the address

 Parse the output to get the leaked data

 No data means a null byte at this address



Let’s analyze it! 

we correctly dumped the ELF

Load binary into Ghidra:

 Identify functions

 Find puts call

 Find puts GOT entry



Dissect the binary

[DEMO GHIDRA]

puts GOT entry!

We could do the same with printf



Leaking the LIBC

For the functions we know (puts / printf):

- call puts(function_got) and return on main to flush stdout

- the output will be the function address in the libc

- then use libc.blukat.me to deduce the libc version



The final strike

• Compute the libc base

• Compute the interesting functions addresses

We can FINALLY call system(“/bin/sh”) !



I am (g)root



Blind Date,

a journey into Blind ROP 

exploitation technique

Thomas Berlioz
LSE Winter Days

Nov. 6/7 2021

All files (including original challenge) are available on github.com/Ewael/LSE

Thank you for your attention, any question?

La root est longue mais la voie est libre


