
Multi-file support in
gcc-rust

1

What is gcc-rust?

1

What is gcc-rust?
- GNU Compiler Collection
- Multiple frontends tied to a single intermediate representation
- gcc Backend which targets a large set of architectures

- Written in C++
- … Sometimes

- Large
- Lots of state

3

What is gcc-rust?
- Safety
- Speed
- Concurrency
- Expressivity
- No garbage collection and no manual memory management! (lifetime analysis)
- Zero-cost abstractions
- Zero setup cross compilation
- Strong ecosystem and tons of libraries at your fingertips!

4

Why?
- Alternative implementation of a rust compiler
- Resolve the bootstrapping problem
- Ability to reach more targets

5

Compilers 101

6

Compilers 101

7

Compilers 101

8

Compilers 101

9

Compilers 101

10

Compilers 101

11

Compilers 101

12

Compilers 101

13

gccrs and Linux
- The Rust-for-Linux effort is getting traction!
- Historically, the Linux kernel is very tied to gcc
- Only recently compilable through clang and LLVM
- Heavy usage of gcc plugins
- We could also backport the rust frontend to older gcc versions to target even more systems and

distributions!

14

Current state
Let’s take a look at some basic Rust examples...

15

fn main() {
 println!("Hello World!");
}

What’s working

16

fn main() {

}

What’s working

17

extern "C" {
 fn printf(s: *const i8, ...);
}

fn main() {
 unsafe {
 printf("Hello World!");
 }
}

What’s working

18

extern "C" {
 fn printf(s: *const i8, ...);
}

fn main() {
 unsafe {
 let s = "Hello World!";
 let s_ptr = s as *const str;
 let s_i8_ptr = s_ptr as *const i8;

 printf(s_i8_ptr);
 }
}

What’s working

19

Current state
Let’s take a look at some basic Rust examples…

https://docs.google.com/spreadsheets/d/1B_JFzHgGclpdtPcQvnThkNJnP7Hh8fCIAU1rYFu_23M/edit#gid=0

20

https://docs.google.com/spreadsheets/d/1B_JFzHgGclpdtPcQvnThkNJnP7Hh8fCIAU1rYFu_23M/edit#gid=0

Preliminary work
- Tiny refactors (rust_debug() function, Session manager singleton) #388, #466, #612...
- Tiny bugfixes (infinite loops, ICEs…) #319, #458...
- Work on cargo-gccrs

- Raising issues on the compiler
- Figuring out the expected rustc behavior
- Allow gccrs to behave like rustc despite offering more possibilities

21

https://github.com/Rust-GCC/gccrs/pull/388
https://github.com/Rust-GCC/gccrs/pull/466
https://github.com/Rust-GCC/gccrs/pull/612
https://github.com/Rust-GCC/gccrs/pull/319
https://github.com/Rust-GCC/gccrs/pull/458
https://github.com/Rust-GCC/cargo-gccrs

Multiple file support
- The mod directive in Rust

- inner modules
- extern modules

- But none of them were supported!
- Marc Poulhies, an Adacore GCC Developer had some work done on inner modules
- Strong difference with how C/C++ handles multiple files

22

mod extern; // Defined in another file, needs fetching

mod intern { // Defined in this file, nothing to do
 struct SomeStruct(i32);
}

Rust modules

23

Multiple file support
- Multiple steps to get external modules working:

- Rework some AST Classes
- Split up some parsing functions to avoid parsing an entire crate each time
- Rework the SessionManager in order to use a different location
- Resolve an external module’s filename (more on that later…)
- Rework some HIR classes
- Expand the items contained in an external file
- Allow the user to specify an external mod’s path via #[path]
- Fix some bugs...

24

mod extern; // Resolves to ModuleNoBody

mod intern { // Resolves to ModuleBodied
 struct SomeStruct(i32);
}

AST Module classes

25

enum Module {
 Loaded(Vec<Ptr<Item>>),
 Unloaded,
}

AST Module classes

26

class Module {
 enum ModuleKind {
 LOADED,
 UNLOADED,
 };

 ModuleKind kind;
 std::vector<std::unique_ptr<Item>> items;
};

AST Module classes

27

let items = Parser::parse_items(lexer);

*module = Module::Loaded(parsed_items)

AST Module classes

28

auto items = Parser::parse_items(lexer);

module.kind = ModuleKind::LOADED;
module.items = std::move(parsed_items);

AST Module classes

29

Resolving the filename
- We’re in C++, so surely there is some nifty abstraction to work with the file system

- The entire filesystem header is only available in C++17
- We are stuck in C++11 for compatibility and bootstrapping reasons…

- Boost.FileSystem is not a possibility in gcc
- The only remaining option is to search for files the C way… using access
- Which Windows doesn’t really like but oh well
- We also have to accomodate for weird file separators on Windows

30

Expanding the items
- Module expansion is done during the macro expansion phase
- This way, if a module is hidden behind an unmet cfg-predicate, the items do not get loaded

31

#[cfg(test)]
mod tests {
 #[test]
 fn validate_bidule() {
 assert_true!(true)
 }
}

Expanding the items

32

Expanding the items
- In order to do so, we need to reimplement a subset of the parsing logic, namely:

- Open a file
- Lex/Tokenize it
- Parse the TokenStream as a collection of Items
- Keep the items as the module’s expanded items

33

void Module::load_items () {
 process_file_path ();

 RAIIFile file_wrap (module_file.c_str ());
 Linemap *linemap = Session::get_instance ().linemap;

 if (file_wrap.get_raw () == nullptr) {
 rust_error_at (get_locus (), "cannot open module file");
 return;
 }

 rust_debug ("Attempting to parse file");

Expanding the items

34

 Lexer lex (module_file.c_str (), std::move (file_wrap), linemap);
 Parser<Lexer> parser (std::move (lex));

 auto parsed_items = parser.parse_items ();

 for (const auto &error : parser.get_errors ())
 error.emit_error ();

 this.items = std::move (parsed_items);
 this.kind = ModuleKind::LOADED;
}

Expanding the items

35

Expanding the items
- To achieve nice looking parsing errors, we need locations…
- In order to get locations, we need to fetch a sh*tload of global variables
- Namely the Linemap
- Which is very integrated with the gcc startup logic and hard to use
- In order to figure out how to use the linemap, we need to understand

- The Linemap C++ abstract class
- The GccLinemap class implementing it
- The C++ low-level linemap structure
- … Which wraps a C linemap struct and location

- But no other frontend has to deal with multiple files from one compiler invocation!
- Except… ?

36

Expanding the items
- gccgo is a go frontend to gcc
- The Go language allows the import of packages defined in external files, similarly to rust modules
- So we can look at how they use the linemap!

37

#include "gogo.h"

static Gogo* gogo;

GO_EXTERN_C void go_create_gogo(const struct go_create_gogo_args* args)
{
 go_assert(::gogo == NULL);
 ::gogo = new Gogo(...);

 ...

gccgo linemap

38

Expanding the items
- This is the start of a week-long debugging session
- For some reason we get garbage as the filename of the new file
- Despite looking at gccgo’s usage of the linemap, I am not closer to a solution
- We actually have to dive suuuuuuper deep in the C code to find one line of documentation
- Regarding the “lifetime” of the C string used as the filename
- Which makes complete sense
- Would be nice if we had a language that took care of lifetimes for us 👀

39

Rework the HIR
- Similarly to the AST, the HIR classes were also split in two (ModuleBodied and ModuleNoBody)
- But at this stage of the pipeline, all module items will have been fetched!
- So we can refactor them in a singular HIR::Module class which always contains items

40

Multiple file support
- It was merged!
- Bringing gccrs closer to completing the Imports and Visibility milestone
- While Philip is still hacking away on Traits, the compiler is progressing slowly but surely

41

Reflections
- gccrs is getting closer and closer to being a full-fledged rust compiler

- Full support is expected in less than a year, minus bug fixes
- There are lots of discussions and considerations around its place in the rust ecosystem

- … And the “risks” associated with it
- There are way too many globals
- Another thing to tackle in gccrs are macros…
- The compiler gets weekly reports from Philip if you’re interested!
- https://github.com/rust-gcc/reporting

42

https://github.com/rust-gcc/reporting

Questions?

Thanks! cohenarthur.dev@gmail.com Arthur Cohen

43

mailto:cohenarthur.dev@gmail.com

