Multi-file support in

gcc-rust
&

What is gcc-rust?

What is gcc+ust?

GNU Compiler Collection
Multiple frontends tied to a single intermediate representation
gcc Backend which targets a large set of architectures

Written in C++
- ...Sometimes

Large
Lots of state

What is gee-rust?

Safety

Speed

Concurrency

Expressivity

No garbage collection and no manual memory management! (lifetime analysis)
Zero-cost abstractions

Zero setup cross compilation

Strong ecosystem and tons of libraries at your fingertips!

Why?

Alternative implementation of a rust compiler
Resolve the bootstrapping problem
Ability to reach more targets

Compilers 101

C
C++
Middle End
Rust

yd

Fortran

Back End

x86-64

aarch-64

RISC-V

SPARC

Compilers 101 %

C x86-64
C++ \ aarch-64
Rust H I I RISC-V

Fortran / SPARC

Compilers 101

x86-64
aarch-64

ﬂ H V
SPARC

RRRRR

Compilers 101

RRRRRR

Compilers 101 %

x86-64
aarch-64
Rust 0 @ @
RISC-V
SPARC

Compilers 101

C
C++
0 @ GCC Backend
Rust
Fortran

x86-64

aarch-64

RISC-V

SPARC

1

Compilers 101

LLVM IR LLVM LIR x86-64
aarch-64
Rust rustc \>§
4
\ RISC-V
libgccijit »< GCC Backend SPARC

12

C
ompilere

Rust

m‘. ustc §

“1

18068

aax G\“—SA

6CC gacke® ﬂ

&PARC

13

gcers and Linux

The Rust-for-Linux effort is getting traction!

Historically, the Linux kernel is very tied to gcc

Only recently compilable through clang and LLVM

Heavy usage of gcc plugins

We could also backport the rust frontend to older gcc versions to target even more systems and
distributions!

14

Current state

Let's take a look at some basic Rust examples...

What's working

fn main() {

println! ("Hello World!");
J

What's working

n main() {

What's working

extern "C" {

fn printf(s: *const 18, ...);
}
fn main() {

unsafe {

printf("Hello World!");
}

What's working

extern "C" {

fn printf(s: *const 18, ...);
}
fn main() {

unsafe {

let s = "Hello World!";
let s_ptr = s as *const str;
let s_1i8_ptr = s_ptr as *const 18;

printf(s_i8_ptr);

Current state

Let's take a look at some basic Rust examples...

https://docs.google.com/spreadsheets/d/1B_JFzHaGclpdtPcQvnThkNJnP7Hh8fCIAUTrYFu_23M/edit#qgid=0

20

https://docs.google.com/spreadsheets/d/1B_JFzHgGclpdtPcQvnThkNJnP7Hh8fCIAU1rYFu_23M/edit#gid=0

Preliminary work

- Tiny refactors (rust_debug() function, Session manager singleton) #388, #466, #612...
- Tiny bugfixes (infinite loops, ICEs...) #319, #458...
- Work on cargo-gccrs

- Raising issues on the compiler

- Figuring out the expected rustc behavior

- Allow gccers to behave like rustc despite offering more possibilities

21

https://github.com/Rust-GCC/gccrs/pull/388
https://github.com/Rust-GCC/gccrs/pull/466
https://github.com/Rust-GCC/gccrs/pull/612
https://github.com/Rust-GCC/gccrs/pull/319
https://github.com/Rust-GCC/gccrs/pull/458
https://github.com/Rust-GCC/cargo-gccrs

Multiple file support

The mod directive in Rust
- Inner modules
- extern modules
But none of them were supported!
Marc Poulhies, an Adacore GCC Developer had some work done on inner modules
Strong difference with how C/C++ handles multiple files

22

Rust modules

mod extern; // Defined in another file, needs fetching

mod intern { // Defined in this file, nothing to do
struct SomeStruct(i32);

Multiple file support

Multiple steps to get external modules working:
- Rework some AST Classes
- Split up some parsing functions to avoid parsing an entire crate each time
- Rework the SessionManager in order to use a different location
- Resolve an external module’s filename (more on that later...)
- Rework some HIR classes
- Expand the items contained in an external file
- Allow the user to specify an external mod’s path via #[path|
- Fix some bugs...

24

AST Module classes

mod extern; // Resolves to ModuleNoBody

mod intern { // Resolves to ModuleBodied
struct SomeStruct(i32);

AST Module classes

num Module {
Loaded (Vec<Ptr<Item>>),
Unloaded,

}

AST Module classes

class Module {
enum ModuleKind {
LOADED,
UNLOADED,

s

ModuleKind kind;
std::vector<std::unique_ptr<Item>> items;

s

AST Module classes

let ditems = Parser::parse_items(lexer);

x*module = Module::lLoaded(parsed_items)

AST Module classes

auto items = Parser::parse_items(lexer);

module.kind = ModuleKind: :LOADED;
module.items = std::move(parsed_items);

Resolving the filename

- We're in C++, so surely there is some nifty abstraction to work with the file system
- The entire filesystem header is only available in C++17
- We are stuck in C++11 for compatibility and bootstrapping reasons...
- Boost.FileSystem is not a possibility in gcc
- The only remaining option is to search for files the C way... using access
- Which Windows doesnt really like but oh well
- We also have to accomodate for weird file separators on Windows

30

-xXpanding the items

Module expansion is done during the macro expansion phase
This way, if a module is hidden behind an unmet cfg-predicate, the items do not get loaded

31

-xpanding the items

mod tests {
fn validate_bidule() {
(true)
}

}

-xXpanding the items

- Inorder to do so, we need to reimplement a subset of the parsing logic, namely:
- Openafile
- Lex/Tokenize it
- Parse the TokenStream as a collection of /tems
- Keep the items as the module’'s expanded items

33

-Xpanding the items

void Module: :load_items () {
process_file_path ();

RAIIFile file_wrap (module_file.c_str ());
Linemap *linemap = Session::get_instance ().linemap;

if (file_wrap.get_raw () == nullptr) {

rust_error_at (get_locus (), "cannot open module file");
return;

rust_debug ("Attempting to parse file");

-Xpanding the items

Lexer lex (module_file.c_str (), std::move (file_wrap), Llinemap);

Parser<lLexer> parser (std::move (lex));
auto parsed_items = parser.parse_items ();

for (const auto &error : parser.get_errors ())
error.emit_error ();

this.items = std::move (parsed_items);
this.kind = ModuleKind: :LOADED;

-xXpanding the items

To achieve nice looking parsing errors, we need locations...
In order to get locations, we need to fetch a sh*tload of global variables
Namely the Linemap
Which is very integrated with the gcc startup logic and hard to use
In order to figure out how to use the linemap, we need to understand
- ThelLinemap C++ abstract class
- The Geelinemap class implementing it
- The C++ low-level inemap structure
- ... Which wraps a C linemap struct and location

But no other frontend has to deal with multiple files fromm one compiler invocation!
Except... ?

36

-xXpanding the items

gcego is a go frontend to gec
The Go language allows the import of packages defined in external files, similarly to rust modules

So we can look at how they use the linemap!

37

gccgo linemap

static Gogo* gogo;

GO_EXTERN_C void (const struct go_create_gogo_args* args)
{

go_assert(::gogo == NULL);

::gogo = new Gogo(...);

-xXpanding the items

This is the start of a week-long debugging session

For some reason we get garbage as the filename of the new file

Despite looking at gccgo’s usage of the linemap, | am not closer to a solution

We actually have to dive suuuuuuper deep in the C code to find one line of documentation
Regarding the “lifetime” of the C string used as the filename

Which makes complete sense

Would be nice if we had a language that took care of lifetimes for us ¢«

39

Rework the HIR

Similarly to the AST, the HIR classes were also split in two (ModuleBodied and ModuleNoBody)
But at this stage of the pipeline, all module items will have been fetched!
So we can refactor them in a singular HIR::Module class which always contains items

40

Multiple file support

It was merged!
Bringing gccrs closer to completing the Imports and Visibility milestone
While Philip is still hacking away on Traits, the compiler is progressing slowly but surely

August 14, 2021 — September 14, 2021 Period: 1 month +
Overview
35 Active Pull Requests 25 Active Issues
o 34 i1 ©®14 on
Merged Pull Requests Open Pull Request Closed Issues New Issues

have changed and there have been 7,117 additions and

Excluding merges, 5 authors have pushed 86 commits to 40
master and 88 commits to all branches. On master, 145 files
20
3,474 deletions. " I . [|-

EaE2R

- 34 Pull requests merged by 4 people

41

Reflections

gccrs is getting closer and closer to being a full-fledged rust compiler
- Full support is expected in less than a year, minus bug fixes

There are lots of discussions and considerations around its place in the rust ecosystem
- ... And the "risks” associated with it

There are way too many globals

Another thing to tackle in gccrs are macros...

The compiler gets weekly reports from Philip if you're interested!

https://github.com/rust-gcc/reporting

42

https://github.com/rust-gcc/reporting

Questions?

Thanks! cohenarthur.dev@gmail.com Arthur Cohen

43

mailto:cohenarthur.dev@gmail.com

