
Rizin: refactoring of the elf
plugin



Introduction



Introduction

My name is Alexis Ehret. I am a student at
EPITA. And I have done a GSoC with Rizin.



Rizin



Rizin, a lovecraftian monster

Rizin is a fork of the well-known tool Radare2,
that “focus on usability, stability, and
working features” and that provide “welcoming
environment for developers and users alike”



Rizin, a lovecraftian monster

“Radare2 was created in February 2006”. So
more than fifteen year of development without
any proper tooling…



Rizin, a lovecraftian monster

42sh$ git clone https://github.com/rizinorg/rizin.git
42sh$ cloc rizin



Rizin, a lovecraftian monster

▶ 594682 lines of C
▶ 92279 lines of C headers



Elf plugin refactoring



Scope

The majority of my work was on librz/bin/p/ and
librz/bin/format/elf/.



Solid foundation

The first thing to do was to refactor every
function in librz/bin/format/elf/ and to split
the elf.c file.

▶ use Rizin annotations
▶ use rz_assert_val_if_fail
▶ refactor or “rewrite” the function if

necessary



Solid foundation

▶ fix sections generated from the dynamic
section

▶ used of the DT_HASH and DT_GNU_HASH
▶ change the source of trust when parsing

symbol versions



DT_HASH

struct elf_hash_table { // DT_HASH
Elf_(Word) nbuckets;
Elf_(Word) nchains;
// Elf_(Word) buckets[nbuckets];
// Elf_(Word) chains[nchains];

};



DT_GNU_HASH

struct gnu_hash_table { // DT_GNU_HASH
Elf_(Word) nbuckets;
Elf_(Word) symoffset;
Elf_(Word) bloom_size;
Elf_(Word) bloom_shift;
// Elf_(Addr) boom[bloom_size];
// Elf_(Word) buckets[nbuckets];
// Elf_(Word) chains[];

};



Sources of trust

▶ Sections information shouldn’t be trusted
in an executable (EXEC / DYN)

▶ Sections information should be trusted with
relocatable file



Dynamic section

struct rz_bin_elf_dt_dynamic_t {
HtUU *info;
RzVector *dt_needed;

};



Better RzBuffer

DEMO



How to store segment information?

typedef struct Elf_(rz_bin_elf_segment_t) {
Elf_(Phdr) data;
bool is_valid;

}
RzBinElfSegment;



How to store section information?

typedef struct rz_bin_elf_section_t {
ut32 flags;
ut32 info;
ut32 link;
ut32 type;
ut64 align;
ut64 offset;
ut64 rva;
ut64 size;
char *name;
bool is_valid;

} RzBinElfSection;



String table

The string table are now correctly parsed and
checked before any string can’t be used. Which
helped removed some hard coded limit.



Symbols and import

DEMO



Configuration variables

▶ elf.load.sections
▶ elf.checks.segments
▶ elf.checks.sections



Thumb addresses

DEMO



Sources



Sources

▶ GSoC sources
▶ GSoC submission

https://hackmd.io/@oszj3t95T6m-bk8YPxSjhA/Byf0LpXYd
https://gist.github.com/08A/acf80d47562ad91cc9a05819039ce994


Conclusion



Conclusion

The GSoC was an incredible source of motivation
to contribute to the Open-Source community.
And it helped me improve my knowledge of elf
internals. I would like to thank my mentors
Anton Kochkov and Florian Märkl for their help
during the GSoC.


	Rizin: refactoring of the elf plugin
	Introduction
	Rizin
	Elf plugin refactoring
	Sources
	Conclusion

