DWAREF

Pierre-Marie de Rodat

pmderodat@Ilse.epita.fr

PM @ {rezosup, freenode, geeknode, . ..

http://1lse.epita.fr

February 12, 2013

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

http://lse.epita.fr

Plan

@ Introduction

S

DWARF

Introduction

Source code
structure

Source code
locations
Variable locations
Call Frame
Information /

Exception handlers

Conclusion

Debugging. . .

@ Debuggers generally have access to:

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Debugging. . . s

DWARF

Introduction

Source code
structure

@ Debuggers generally have access to:
° Registers Source code

locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Debugging. . . E

DWARF

Introduction

Source cod
@ Debuggers generally have access to: Source code
o Registers Source code

e Virtual memory locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Debugging. . . s

DWARF

Introduction

Source code

@ Debuggers generally have access to:

structure
] Registers Source code
e Virtual memory locations
e Most Of the time, the binary flle Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Debugging. . . s

DWARF

Introduction

Source code

@ Debuggers generally have access to:

structure
] Registers Source code
e Virtual memory Lot
o Most of the time, the binary file Vel legatdtom
Call Frame
@ They can compute: Information /

Exception handlers

Conclusion

Debugging. . . E

DWARF

Introduction

Source code
structure

@ Debuggers generally have access to:

(4] Registers Source code
e Virtual memory esations
o Most of the time, the binary file Vel legatdtom
Call Frame
o They can Compute. Information /

Exception handlers

o The backtrace: with the frame pointer register, or
with some static analysis. . .

Conclusion

Debugging. . . E

DWARF

Introduction

Source code
structure

@ Debuggers generally have access to:

(4] Registers Source code
e Virtual memory eciions
o Most of the time, the binary file Vel legatdtom
Call Frame
o They can Compute. Information /

Exception handlers

o The backtrace: with the frame pointer register, or
with some static analysis. . .
o Not much more :-(

Conclusion

... with DWAREF (1/3)

e With no other information, debugging a high-level
language source code is hard.

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

... with DWAREF (1/3)

e With no other information, debugging a high-level
language source code is hard.

@ Manually look at ASM and original source code.

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

... with DWAREF (1/3)

e With no other information, debugging a high-level
language source code is hard.

@ Manually look at ASM and original source code.

@ Understand how the program works, where
expressions are evaluated, etc.

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

... with DWAREF (1/3)

e With no other information, debugging a high-level
language source code is hard.

@ Manually look at ASM and original source code.

@ Understand how the program works, where
expressions are evaluated, etc.

e Compilers can help producing DWAREF info (among
others) along with the ASM.

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

... with DWAREF (1/3)

e With no other information, debugging a high-level
language source code is hard.

@ Manually look at ASM and original source code.

@ Understand how the program works, where
expressions are evaluated, etc.

e Compilers can help producing DWAREF info (among
others) along with the ASM.

@ At each compilation pass, maintain metadata
associated with the code.

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

... with DWAREF (1/3)

e With no other information, debugging a high-level
language source code is hard.

@ Manually look at ASM and original source code.

@ Understand how the program works, where
expressions are evaluated, etc.

@ Compilers can help producing DWAREF info (among
others) along with the ASM.

@ At each compilation pass, maintain metadata
associated with the code.

e With GCC/Clang, enabled with the -g switch.

S -

DWARF
Pierre
[
Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

... with DWARF (2/3)

@ Source code structure: declarations

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

... with DWARF (2/3)

@ Source code structure: declarations

@ Source code locations: from PC to line:column

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

... with DWARF (2/3)

@ Source code structure: declarations
@ Source code locations: from PC to line:column

@ Variable locations: when at PC, where to look at for

int a;

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

... with DWARF (2/3)

@ Source code structure: declarations
@ Source code locations: from PC to line:column

@ Variable locations: when at PC, where to look at for

int a;

@ Call Frame Information: stack (un|re)winding

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

... with DWARF (2/3)

Source code structure: declarations
Source code locations: from PC to line:column

Variable locations: when at PC, where to look at for

int a;
Call Frame Information: stack (un|re)winding

Special case: exception handlers

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

... with DWAREF (3/3)

e Full support for C, C++, Fortran, Java, ObjectiveC,

S -

DWARF

Introduction

Source code
structure

Source code
! ions

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

... with DWAREF (3/3)

e Full support for C, C++, Fortran, Java, ObjectiveC,

e Limited support for Ada, Cobol, D, PL/I

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

... with DWAREF (3/3)

e Full support for C, C++, Fortran, Java, ObjectiveC,

e Limited support for Ada, Cobol, D, PL/I

@ More if you implement it!

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

... with DWAREF (3/3)

e Full support for C, C++, Fortran, Java, ObjectiveC,

e Limited support for Ada, Cobol, D, PL/I
@ More if you implement it!
@ Extensible: "vendor additions"

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

DWARF in ELF

@ readelf -w <elf>

S

DWARF

Introduction

Source code
structure

Source code

locati

Variable locations
Call Frame
Information /

Exception har

Conclusion

DWARF in ELF

@ readelf -w <elf>

@ objdump --dwarf[=...] <elf>

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

DWARF in ELF

@ readelf -w <elf>
@ objdump --dwarf[=...] <elf>

@ .debug_info, .debug_abbrev, .debug_loc, ...,
.eh_frame

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Plan

© Source code structure

S

DWARF

Introduction

Source code
structure

Source code

locati

Variable locations
Call Frame
Information /

Exception har

Conclusion

Source code structure

@ Kind of central knowledge about the logical layout of
the program.

S

DWARF

Introduction

Source code
structure

Source code
locations
Variable locations
Call Frame
Information /

Exception handlers

Conclusion

Source code structure

@ Kind of central knowledge about the logical layout of
the program.

@ Organised as a big tree.

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Source code structure

@ Kind of central knowledge about the logical layout of
the program.
@ Organised as a big tree.
o Tell the debugger about declarations:
e compilation units

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Source code structure

@ Kind of central knowledge about the logical layout of
the program.
@ Organised as a big tree.
o Tell the debugger about declarations:
e compilation units
o types

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Source code structure

@ Kind of central knowledge about the logical layout of
the program.
@ Organised as a big tree.
o Tell the debugger about declarations:
e compilation units

o types
o global variables

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Source code structure I

DWARF

Introduction

@ Kind of central knowledge about the logical layout of ~ EiiEs
structure

the program' Source code
locations

@ Organised as a big tree.
o Tell the debugger about declarations:

Variable locations

Call Frame

e compilation units Information /

Exception handlers
types
global variables

subprograms (plus parameters, local variables)
etc.

Conclusion

Example 1 — Source code

#include <stdio.h>

void put_hello_world()

{
puts("Hello, world!");

int main(void)

{
put_hello_world(Q);
return 0;

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Example 1 — objdump --dwarf=info (1/2) E

DWARF

<0>: Abbrev Number: 1 (DW_TAG_compile_unit)

<c> DW_AT_producer : (indirect string, offset: 0x43):
GNU C 4.7.2 Introduction
<10> DW_AT_language HE | (ANSI O
<11> DW_AT_name : (indirect string, offset: 0x59): ggﬁﬁi;fde
simple.c
<15> DW_AT_comp_dir : (indirect string, offset: 0x0): fm“igfde
<19> DW_AT_low_pc : (\)1}1131;4 fc Variable locations
<21> DW_AT_high_pc : 0x400521 Call Frame
<29> DW_AT_stmt_list : 0x0 Information /
<1><2d>: Abbrev Number: 2 (DW_TAG_base_type) e iEmelgs
<2e> DW_AT_byte_size 8 Conclusion
<2f> DW_AT_encoding Ha4 (unsigned)
<30> DW_AT_name : (indirect string, offset: 0x87):

long unsigned int
<1><34>: Abbrev Number: 2 (DW_TAG_base_type)

<35> DW_AT_byte_size 1
<36> DW_AT_encoding H (unsigned char)
<37> DW_AT_name : (indirect string, offset: 0x62):

unsigned char

Example 1 — objdump --dwarf=info (2/2) E

DWARF
<1><73>: Abbrev Number: 4 (DW_TAG_subprogram)
<74> DW_AT_external HE |
<75> DW_AT_name : (indirect string, offset: 0x20):
put_hello_world Introduction
<79> DW_AT_decl_file 01 Source code
<7a> DW_AT_decl_line : 3 SHTHElTE
<7b> DW_AT_low_pc : 0x4004fc Source code
<83> DW_AT_high_pc : 0x40050c locations
<8b> DW_AT_frame_base : 0x0 (location list) Variable locations
<8f> DW_AT_GNU_all_tail_call_sites: 1 Calll Frame
<1><90>: Abbrev Number: 5 (DW_TAG_subprogram) Information /
<91> DW_AT_external -1 Exception handlers
<92> DW_AT_name : (indirect string, offset: 0x82): G
main
<96> DW_AT_decl_file Ha
<97> DW_AT_decl_line 8
<98> DW_AT_prototyped : 1
<99> DW_AT_type : <0x57>
<9d> DW_AT_low_pc 1 0x40050c
<a5> DW_AT_high_pc : 0x400521
<ad> DW_AT_frame_base : 0x60 (location list)

<bl> DW_AT_GNU_all_tail call_sites: 1

Example 2 — Source code

#include <stdlib.h>

struct my_list

{
unsigned value;
struct my_list *next;

b

unsigned my_list_max(struct my_list *1)
{

unsigned max = 0;

while (1 != NULL)

{
if (1->value > max)
max = l->value;
1 = 1->next;
}

return max;

S

DWARF

Introduction

Source code
structure

Source code
locations
Variable locations
Call Frame
Information /

Exception handlers

Conclusion

Example 2 — objdump --dwarf=info (1/2) E

DWARF
<1><49>: Abbrev Number: 4 (DW_TAG_structure_type)
<4a> DW_AT_name : (indirect string, offset: 0x6c): my_lig
<4e> DW_AT_byte_size : 16
<4f> DW_AT decl_file : 1 ligf e dheadtoro
<50> DW_AT_decl_line 3 Source code
<51> DW_AT_sibling T <0x72> Shciug
<2><55>: Abbrev Number: 5 (DW_TAG_member) Source code
<56> DW_AT_name : (indirect string, offset: 0x58): value JESllnS
<5a> DW_AT_decl_file Ha Variable locations
<5b> DW_AT_decl_line HE) .
Call Frame
<5¢> DW_AT_type : <0x72> Information /

<60> DW_AT_data_member_location: [...] (DW_OP_plus_uconst: 0) Exception handlers
<2><63>: Abbrev Number: 5 (DW_TAG_member)

Conclusion

<64> DW_AT_name : (indirect string, offset: 0x5e): next
<68> DW_AT_decl_file HE |

<69> DW_AT_decl_line HE{)

<6a> DW_AT_type : <0x79>

<6e> DW_AT_data_member_location: [...] (DW_OP_plus_uconst: 8)
[<0x72> = unsigned int]
<1><79>: Abbrev Number: 6 (DW_TAG_pointer_type)

<7a> DW_AT_byte_size H

<7b> DW_AT_type : <0x49>

Example 2 — objdump --dwarf=info (2

<1><7f>:

<80>
<81>
<85>
<86>
<87>
<88>
<8c>
<94>
<9c>
<al>

<2><al>:

<az2>
<a4>
<a5>
<ab>
<aa>

<2><ad>:

<ae>
<b2>
<b3>
<b4>
<b8>

Abbrev Number:
DW_AT_external

7 (DW_TAG_subprogram)
1

DW_AT_name [...] my_list_max
DW_AT_decl_file HE !

DW_AT_decl_line : 10
DW_AT_prototyped : 1

DW_AT_type r <0x72>
DW_AT_low_pc : 0x0

DW_AT_high_pc : 0x3d

DW_AT_frame_base : 0x0

(location list)

DW_AT_GNU_all_call_sites: 1

Abbrev Number:

8 (DW TAG_formal_parameter)

DW_AT_name 1
DW_AT_decl_file 1
DW_AT_decl_line : 10
DW_AT_type : <0x79>

DW_AT_location
Abbrev Number:

: [...] (DW_OP_fbreg: -40)
9 (DW_TAG_variable)

DW_AT_name I max
DW_AT_decl_file HE !
DW_AT_decl_line : 12
DW_AT_type r <0x72>

DW_AT_location

[...] (DW_OP_fbreg: -20)

S

DWARF

Introduction

Source code
structure

Source code

! ions
Variable locations
Call Frame
Information /

Exception handlers

Conclusion

Beyond X

DWARF

Introduction

@ .debug_info works with .debug_abbrev

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Beyond X

DWARF

Introduction

@ .debug_info works with .debug_abbrev

Source code
structure

@ Other data structures have their own constructs
(union: DW_TAG_union_type, C++ class: ponce code
DW_TAG_C 1aS S_type) Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Beyond E

DWARF

Introduction

@ .debug_info works with .debug_abbrev

Source code
structure

@ Other data structures have their own constructs
(union: DW_TAG_union_type, C++ class: pousce code
DW_TAG_C 1 as S_type) Variable locations

@ There is support for various language pecularities Call Frame

Information /

(artificial object this pointer, static link, etc.) Bxception handlers

Conclusion

Beyond

@ .debug_info works with .debug_abbrev

@ Other data structures have their own constructs
(union: DW_TAG_union_type, C++ class:
DW_TAG_class_type)

@ There is support for various language pecularities
(artificial object this pointer, static link, etc.)

e Langage with "too advanced" features can use basic
constructs to encode information.

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Beyond E

DWARF

Introduction

@ .debug_info works with .debug_abbrev
Source code
@ Other data structures have their own constructs Structue
. . Source cod
(union: DW_TAG_union_type, C++ class: Tocations.
DW_TAG_C 1 as S_type) Variable locations
X . e Call Frz
@ There is support for various language pecularities o

(artificial object this pointer, static link, etc.) Bxception handlers

Conclusion

e Langage with "too advanced" features can use basic
constructs to encode information.

Or they can define their own entries and attributes.

Plan

© Source code locations

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations
Call Frame
Information /

Exception har

Conclusion

Source code locations

@ Goal: associate statements locations (line, filename)
to PC values (both ways).

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Source code locations

@ Goal: associate statements locations (line, filename)
to PC values (both ways).

@ Can be a very huge table for big compilation units.

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Source code locations

@ Goal: associate statements locations (line, filename)
to PC values (both ways).

@ Can be a very huge table for big compilation units.
o DWARF way: create a VM to build the table!

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Source code locations

@ Goal: associate statements locations (line, filename)
to PC values (both ways).

@ Can be a very huge table for big compilation units.
o DWARF way: create a VM to build the table!

@ Also contain other PC-dependant data (ARM
instruction set, .. .)

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Source code locations

@ Goal: associate statements locations (line, filename)
to PC values (both ways).

@ Can be a very huge table for big compilation units.
o DWARF way: create a VM to build the table!

@ Also contain other PC-dependant data (ARM
instruction set, .. .)

@ Located in .debug_line

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Example — Source code s

DWARF

Introduction

Source code

10 unsigned my_list_max(struct my_list *1) rm-ae

11 {

12 unsigned max = 0; lsg;r;;f:de

13 while (1 != NULL)

14 { Variable locations

15 if (1->value > max) Call Frame

16 max = l->value; Information /
Exception handlers

17 1 = 1->next;

18 } Conclusion

19 return max;

20 }

Example — Line number program

objdump --debug=rawline

[...]

The File Name Table:
Entry Dir Time
1 0

Size Name
0 lesssimple.c

Line Number Statements:
Extended opcode 2: set Address to 0x0
Advance Line by 10

Copy

Special
Special
Special
Special
Special

opcode
opcode
opcode
opcode
opcode

118:
104:

35:

160:
132:

Extended opcode 4:

Special opcode
Special opcode

169:
109:

Special opcode 48:
Advance PC by 2 to
Extended opcode 1:

to 11

advance Address by 8 to 0x8 and Line by 1 to 12
advance Address by 7 to 0xf and Line by 1 to 13
advance Address by 2 to 0x11 and Line by 2 to 15

advance Address by 11 to Oxlc and Line by 1 to 16
advance Address by 9 to 0x25 and Line by 1 to 17

set Discriminator to 1
advance Address by 12 to 0x31 and Line by -4 to

advance Address by 7 to 0x38 and Line by 6 to 19

advance Address by 3 to 0x3b and Line by 1 to 20
0x3d
End of Sequence

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Example — Line number table s

DWARF
objdump --debug=decodeline 0000000000000000 <my_list_max>:
X 0: push %rbp
CU lesssimple c: . 1: mov %rsp,%rbp Introduction
File name Line Starting 4: mov %rdi , -0x18 (%rbp) e
_ number address 8: movl $0x0,-0x4(%rbp) structure
lesssimple.c 11 0 f: jmp 31 <my_list_max+0x31> [FSENNNSIN
X 11: mov -0x18(%rbp) ,%rax locations
leSSS}mple.c 12 0x8 15: mov (%rax) ,%eax Variable locations
lesssimple.c 13 Oxf 17: cmp —0x4(%rbp) ,%eax Anabie locations
iesss%mpie.c ig gxil la: jbe 25 <my_list_max+0x25> Eﬁg:ﬁig;w
esss:.me e.c xlc 1c: mov -0x18 (%rbp) ,%rax Exception handlers
lesssimple.c 17 0x25 20: mov (%rax) ,%eax
lesssimple.c 13 0x31 22: mov %oax —éx4(%rbp) Conclusion
lesssimple.c 19 0x38 25: mov -0x18(%rbp) ,%rax
lesssimple.c 20 0x3b 29: mov 0x8 (%rax) ,%rax

2d: mov %rax,-0x18(%rbp)

31: cmpq $0x0,-0x18(%rbp)

36: jne 11 <my_list_max+0x11>
38: mov -0x4 (%rbp) ,%eax

3b: pop %rbp

3c: retq

Plan

@ Variable locations

S

DWARF

Introduction

Source code
structure

Source code

locati

Variable locations
Call Frame
Information /

Exception har

Conclusion

Variable locations

e Knowing what can be accessed is good.

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Variable locations

e Knowing what can be accessed is good.

@ How to access it?

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Variable locations

e Knowing what can be accessed is good.

@ How to access it?

@ There is almost no rule!

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Variable locations

e Knowing what can be accessed is good.
@ How to access it?
@ There is almost no rule!

o DWARF way: create a VM to evaluate location
expressions!

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Variable locations E

DWARF

Introduction

Source code

e Knowing what can be accessed is good. siracture
Source code
@ How to access it? locations
. Variable locati
@ There is almost no rule! i
Ca‘]l Frame
o DWAREF way: create a VM to evaluate location Information /
Exception handlers
ions!
exp ressions: Conclusion
@ Located in .debug_loc

Example (1/2) E

DWARF

<2><63>: Abbrev Number: 5 (DW_TAG_member) Introduction
<64> DW_AT_name : (indirect string, offset: 0x5e): next [RISEESEEN
<68> DW_AT_decl_file Ha structure
<69> DW_AT_decl_line : 6 Source code
<6a> DW_AT_type : <0x79> locations
<6e> DW_AT_data_member_location: 2 byte block: 23 8 Variable locations
(DW_OP_plus_uconst: 8)
[...] Ca‘]l Frame
Information /
<2><ad>: Abbrev Number: 9 (DW TAG_variable) Exception handlers
<ae> DW_AT_name I max Comabattonn
<b2> DW_AT_decl_file 1
<b3> DW_AT_decl_line r 12
<b4> DW_AT_type r <0x72>
<b8> DW_AT_location : 2 byte block: 91 6¢

(DW_OP_fbreg: -20)

Example (2/2) E

DWARF

objdump --debug=info

<1><7f>: Abbrev Number: 7 (DW_TAG_subprogram)

Introduction

<80> DW_AT_external Ha

<81> DW_AT_name : [...] my_list_max Source code
<85> DW_AT_decl_file 1 structure

<86> DW_AT_decl_line : 10 Source code
<87> DW_AT_prototyped : 1 loeions

<88> DW_AT_type r <0x72> Variable locations
<8c> DW_AT_low_pc : 0x0 Call Frame

<94> DW_AT_high_pc : 0x3d Information /
<9¢> DW_AT_frame_base : 0x0 (location list) Exception handlers
<a®> DW_AT_GNU_all_call_sites: 1 Conclusion

objdump --debug=loc

Offset Begin End Expression

00000000 0000000000000000 0000000000000001 (DW_OP_breg7 (rsp): 8)
00000000 0000000000000001 0000000000000004 (DW_OP_breg7 (rsp): 16)
00000000 0000000000000004 000000000000003c (DW_OP_breg6 (rbp): 16)
00000000 000000000000003c 000000000000003d (DW_OP_breg7 (rsp): 8)
00000000 <End of list>

Plan

@ Call Frame Information / Exception handlers

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Call Frame Information

@ Debugging involves inspecting the whole stack.

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Call Frame Information

@ Debugging involves inspecting the whole stack.

@ At one point, direct access to most recent call frame.

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Call Frame Information

@ Debugging involves inspecting the whole stack.
@ At one point, direct access to most recent call frame.

@ To access other ones: stack unwinding.

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Call Frame Information

@ Debugging involves inspecting the whole stack.

@ At one point, direct access to most recent call frame.

@ To access other ones: stack unwinding.

@ Located in .eh_frame (.debug_frame?)

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Call Frame Information

@ PC range for the targetted subprogram.

S

DWARF

Introduction

Source code
structure

Source code
! ions

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Call Frame Information

@ PC range for the targetted subprogram.

e Call Frame Address: stack pointer at the subprogram
call site.

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Call Frame Information

@ PC range for the targetted subprogram.

e Call Frame Address: stack pointer at the subprogram
call site.

@ A set of register used by the current subprogram (and
then the values they contained is saved somewhere).

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Call Frame Information (1/2) E

DWARF

Introduction

objdump --debug=frames

Source code

00000000 00000014 00000000 CIE ELISCS
Version: 1 Source code
Augmentation: "zR" locations
Code alignment factor: 1 Variable locations
Data alignment factor: -8 p—
Return address column: 16 Information /
Augmentation data: 1b Exception handlers

Conclusion

DW_CFA_def_cfa: r7 (rsp) ofs 8
DW_CFA_offset: r16 (rip) at cfa-8
DW_CFA_nop

DW_CFA_nop

Call Frame Information (2/2)

objdump --debug=frames

00000118 00000024 000000ec FDE cie=00000030
pc=fffffffffffed2dd..fffffffffffed3s52
DW_CFA_advance_loc: 10 to fffffffffffed2da

DW_CFA_offset: r3 (rbx) at cfa-40
DW_CFA_offset: r6 (rbp) at cfa-32
DW_CFA_advance_loc: 13 to fffffffffffed2e7
DW_CFA_offset: rl12 (rl12) at cfa-24
DW_CFA_offset: r13 (rl13) at cfa-16
DW_CFA_advance_loc: 7 to fffffffffffed2ee
DW_CFA_def_cfa_offset: 48
DW_CFA_advance_locl: 99 to fffffffffffed351
DW_CFA_def_cfa_offset: 8

DW_CFA_nop

DW_CFA_nop

DW_CFA_nop

DW_CFA_nop

DW_CFA_nop

DW_CFA_nop

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Exception handlers

@ .eh_frame is inteded to be loaded in the process’
memory.

S

DWARF

Introduction

Source code
structure

Source code
! ions

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Exception handlers

@ .eh_frame is inteded to be loaded in the process’
memory.

@ Zero-cost exceptions: do nothing particular in the
fast path.

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Exception handlers

@ .eh_frame is inteded to be loaded in the process’
memory.

@ Zero-cost exceptions: do nothing particular in the
fast path.

@ When throwing an exception, call some runtime
library.

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Exception handlers

@ .eh_frame is inteded to be loaded in the process’
memory.

@ Zero-cost exceptions: do nothing particular in the
fast path.

@ When throwing an exception, call some runtime
library.

@ The runtime library uses DWAREF information to
unwind the stack until finding an exception handler.

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations
Call Frame
Information /

Exception handlers

Conclusion

Exception handlers s

DWARF

@ .eh_frame is inteded to be loaded in the process’ Introduction
Source code
memory stkruc(tulfe ‘
@ Zero-cost exceptions: do nothing particular in the Source code
locations
fast path.
s p Variable locations
@ When throwing an exception, call some runtime Call Frame
. Information /
llbrarY‘ Exception handlers
@ The runtime library uses DWARF information to Conclusion
unwind the stack until finding an exception handler.
e Language specific: not in the DWARF

specification. . .

Plan

@ Conclusion

S

DWARF

Introduction

Source code
structure

Source code
locations
Variable locations
Call Frame
Information /

Exception handlers

Conclusion

Conclusion

@ The DWAREF format itself is quite simple (once big
tables are compressed :-)

S

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Conclusion

@ The DWAREF format itself is quite simple (once big
tables are compressed :-)

@ Producing DWAREF (and debug information in
general) is not straightforward.

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

Conclusion

@ The DWAREF format itself is quite simple (once big
tables are compressed :-)

@ Producing DWAREF (and debug information in
general) is not straightforward.
@ Even if it’s architecture and language independant,

there is a need to add support for it both to the
compiler and to the debugger.

S -

DWARF

Introduction

Source code
structure

Source code
locations

Variable locations

Call Frame
Information /
Exception handlers

Conclusion

	Introduction
	Source code structure
	Source code locations
	Variable locations
	Call Frame Information / Exception handlers
	Conclusion

