

Generating synthetic traffic to improve the robustness of network intrusion detection

Gregory Blanc *IMT/Télécom SudParis, Institut Polytechnique de Paris* **LSE Summer Week 2022** EPITA, Kremlin-Bicêtre, 2020/07/07

\$whoami

- faculty at Télécom SudParis, an IMT school, member of IP Paris
- researcher at SCN (Sécurité et Confiance Numérique), a team of the SAMOVAR lab
- head of the SSR (Sécurité des Systèmes et Réseaux) specialization curriculum
- interested in network security, network virtualization, machine learning for cybersecurity
- holds a Ph.D degree from Nara Institute of Science and Technology (NAIST), Japan
- holds a Mastère Spécialisé in Networks and Information Security and a Diplôme d'Ingénieur from ESIEA
- led the SWAN (Security of Web ApplicatioNs) WG at WIDE, Japan
- worked as a security solutions integrator at BT CyberNetworks

Team and Projects

Contributors

- Mustafizur R. Shahid (Ph.D, 2017–2021)
- Cuong Pham (Engineer, 2017–2018)
- Houda Jmila (Postdoc, 2018–)
- Marwan Lazrag (Engineer, 2019–)
- Paul Peseux (Trainee, 2019)
- Paul-Henri Mignot (Engineer, 2021–)
- Adrien Schoen (Ph.D, 2021–)
- Solayman Ayoubi (Ph.D, 2022–)

Projects

- CEF VARIoT (Vulnerability and Attack Repository for IoT, 2019–2022)
- H2020 SPARTA CAPE (Continuus Assessment in Polymorphous Environments, 2019–2022)
- ANR GRIFIN (Cognitive and Programmable Security for Resilient Next-Generation Networks, 2021-2025)
- Futur & Ruptures Ph.D Grant (IMT, 2017–2021)

<u>Collaborators</u>: Hervé Debar, Pierre-François Gimenez (IRISA), Yufei Han (Inria), Christophe Kiennert, Frédéric Majorczyk (DGA-MI), Ludovic Mé (Inria), Thomas Silverston (LORIA), Sébastien Tixeuil (LIP6), Zonghua Zhang

Intrusion Detection 1

- 2 A Primer on Machine Learning and Generative Networks
- 3 Evaluation of Intrusion Detection Systems
- 4
- 5 Learning-based Anomaly Detection in IoT
- 6

Alert on any suspicious activity enabling later filtering or correlation

- What is suspicious?
 - misuse: activity known to be malicious
 - anomaly: activity deviant from normal
- How to capture suspicious activities?
 - at the host: process, log, file, etc.
 - in the network: flow, packet headers, contents, etc.

Huge volume of activities incur longer processing time

Misuse detection

- Approach mostly attack signatures
- Features packet headers, flow stats, TCP connections, etc.
 - Trends data mining and machine learning on labeled traffic datasets
- Challenges lack of datasets (existence, diversity, freshness, reliability)
 - frequency of model re-training

Anomaly detection

Approach (normal) behavioural profiles

Learning unsupervised, semi-supervised, supervised

- Challenges cleanliness of datasets
 - accuracy of normal behaviour
 - high false positive rate

Works well with low-entropy normal behaviour

1 Intrusion Detection

2 A Primer on Machine Learning and Generative Networks

Learning-based Traffic Generation

Machine Learning

(a) Experience, task and performance. Source: underscore.vc

(b) Input, output, program

Figure: Two definitions of machine learning.

Figure: Two categories of machine learning tasks. Source: crayondata.com

Synthetic traffic generation for robust network intrusion detection

(b) Neuron computation.

Figure: Artificial neural networks. Source: miro.medium.com

10/37 2022/07/07

Neural Network Training

Figure: Training focuses on finding the optimal weights of each layer that best map the input instances to their corresponding targets. Source: M.R. Shahid.

11/37 2022/07/07 G. Blanc (TSP, IP Paris) Synthetic traffic generation for robust network intrusion detection

Figure: AEs are unsupervised NNs that learn to copy their inputs to their outputs under some constraints. Source: M.R. Shahid.

12/37 2022/07/07

Generative Adversarial Networks (GAN)

Figure: GANs are composed of two competing NNs. Source: M.R. Shahid.

Synthetic traffic generation for robust network intrusion detection

1 Intrusion Detection

3 Evaluation of Intrusion Detection Systems

Learning-based Traffic Generation

Issues in Testing IDS

Back in 2003, NIST identified several challenges:

- difficulties in collecting attack scripts and victim software
- differing requirements for testing signature based vs. anomaly based IDS
- differing requirements for testing network based vs. host based IDS
- approaches to using background traffic in IDS tests:
 - no background traffic/logs
 - real traffic/logs
 - sanitized traffic/logs
 - generating traffic on a testbed network

source: Mell et al., *An Overview of Issues in Testing Intrusion Detection Systems*, NISTIR 7007, 2003

Evaluation Metrics

According to (Milenkovski et al., 2015), IDS evaluation best practices measure (w.r.t. *attack detection*):

- Attack detection accuracy: accuracy of an IDS in the presence of mixed workloads
- Attack coverage: accuracy of an IDS in the presence of pure malicious workloads
- Resistance to evasion techniques:
 - overlooked in comparison to above two, as (Sommer & Paxson, 2010) consider it to be of limited importance from a practical perspective
 - involves pure malicious and mixed workloads
- Attack detection and reporting speed: relevant for distributed IDS

Other measurements address performance properties of IDS.

source: Milenkovski et al., *Evaluating Computer Intrusion Detection Systems: A Survey of Common Practices*, ACM ComSur, 2015

Classification Metrics

Evaluating an IDS is often considered a binary classification problem. Leveraging the confusion matrix, we can measure:

- Accuracy: $\frac{TN+TP}{TP+FP+TN+FN}$ (overall success rate)
- **Precision**: <u>TP</u> (aka positive predicted value)
- Detection Rate: TP/TP+FN (aka sensitivity or recall)
- True Negative Rate: TN TN+FP (aka specificity)
- **False Positive Rate**: $\frac{FP}{FP+TN} = 1 TNR$ (aka fall-out)
- F-measure: 2 × precision×recall precision+recall
- Receiver Operating Characteristic curve: plot of the sensitivity as a function of 1 – specificity

source: Moustafa et al., *A holistic review of Network Anomaly Detection Systems: A comprehensive survey*, Elsevier JNCA, 2019

SoTA of the Evaluation of ML/DL-based IDS

Evaluation of an IDS requires:

- a testing environment
- a dataset
- a set of metrics

Evaluation methodologies usually focus on:

- dataset quality
- detection performance metrics
- realistic environment provision

Shortcomings

Most ML/DL-based IDS proposals:

- share the same set of metrics
 - accuracy instead of precision and recall
 - fail to use MCC when the dataset is imbalanced
- use widespread IDS datasets
 - KDD99 has been over-used
 - D'Hooge et al. demonstrated that many datasets suffer from **shortcut** learning
- propose comparisons
 - experimental protocols differ, e.g., **tasks are different** (supervised classification vs. anomaly detection)
 - experimental settings differ, e.g., same datasets but different splits

source: D'Hooge et al., Establishing the Contaminating Effect of Metadata Feature Inclusion in Machine-Learned Network Intrusion Detection Models, DIMVA'22

Outline

1

- 2 A Primer on Machine Learning and Generative Networks
- 3 Evaluation of Intrusion Detection Systems

Robustness 4

5 Learning-based Anomaly Detection in IoT

Concept Drift

Proposed NIDSs assume that the distribution of data is stationary. But:

- not all categories of malicious behaviour are represented uniformly across the training set
- well-established traffic features may exhibit a very gradual drift as the user habits change

Andresini et al. outline a few solutions:

- identify which characteristics change and tune the NIDS to traces exhibiting such changes
- train DNN models on historical labeled data and update them to fit unlabeled traces via transfer learning
- past models may be structurally extended to incorporate new model branches

source: Andresini et al., *INSOMNIA: Towards Concept-Drift Robustness in Network Intrusion Detection*, AlSec'21

Adversarial Examples

Malicious samples can be rendered **evasive** by intentionally adding **small perturbations** leading a *trained model* to misclassify them:

$$\mathbf{x}' = \mathbf{x} + \delta$$

Yang et al. have proposed 3 approaches to generate black-box adversarial examples:

- solving an optimization problem on a white-box substitute model and then leverage *transferability*
- estimating the gradient information to generate adequate perturbations
- training a GAN

source: Yang et al., Adversarial Examples Against the Deep Learning Based Network Intrusion Detection Systems, MILCOM'18

Improving Intrusion Detection using GAN (1/2)

In this work, we took the angle of an adversary trying to mimic legitimate traffic, which prompted several issues:

- what is an anomaly in such context?
- what is the meaning of adversarial traffic?
- can we make the detector more robust?

Our approach was to propose a **double-objective** GAN (NOVGAN) that leverages GAN's *sword-and-shield* approach so as to **evade** IDSes:

- to generate traffic features that resemble real (legitimate) traffic
- to generate traffic that is harmful to a target network

New loss function for the Generator:

with $L_{D,G}(z) = -\log DG(z)$

 $loss_G = \underset{z \sim P_Z}{\mathbb{E}}[MG(z)L_{D,G}(z) + (1 - MG(z))(\alpha L_{D,G}(z) + offset)]$

Improving Intrusion Detection using GAN (2/2)

Proposed loss function visualization:

Some results on NSL-KDD dataset using the *M* function as a classifier:

Algo	Accuracy	Precision	F1-score
naive	0.91	0.89	0.90
RForest	0.996	0.998	0.99

Open problems include cost reduction of parameters tuning, feature-to-traffic transformation.

source: Peseux, Blanc and Kiennert, NOVGAN (draft), 2020

24/37 2022/07/07

Synthetic traffic generation for robust network intrusion detection

Outline

1 Intrusion Detection

- 2 A Primer on Machine Learning and Generative Networks
- 3 Evaluation of Intrusion Detection Systems

4 Robustness

5 Learning-based Anomaly Detection in IoT

Learning-based Traffic Generation

IoT Testbed in VARIoT

In VARIoT, we propose to generate traffic datasets and anomaly detection models for a range of IoT devices.

26/37 2022/07/07

IoT Identification by network traffic analysis

	sensor	camera	bulb	plug
RF	1.	1.	.997	.997
DT	.993	.995	.995	.997
SVM	.997	.988	.997	.984
KNN	.995	.988	.986	.984
ANN	.990	.986	.989	.978
GNB	.985	.871	.880	.958

source: Shahid et al., *IoT Devices Recognition through Network Traffic Analysis*, Proc. of BigData'18

Detection of anomalous IoT communications

source: Shahid et al., Anomalous Communications Detection in IoT Networks using Sparse Autoencoders, NCA'19

Outline

1

- 2 A Primer on Machine Learning and Generative Networks
- 3 Evaluation of Intrusion Detection Systems

4

- 5 Learning-based Anomaly Detection in IoT

Network Intrusion Detection Datasets (Ring et al., 2019)

- Labeled and representation network-based datasets are necessary to compare the quality of different NIDS
- Few labeled datasets are publicly available
- Available datasets are often outdated
- Using real network traffic is also problematic due to the missing ground truth (manual labeling is difficult)
- Real network traffic cannot often be shared due to privacy concerns

Proposal: generate realistic flow-based network traffic

source: Ring et al., *Flow-based Network Traffic Generation using Generative Adversarial Networks*, Elsevier Computers & Security, 2019

Statistical Legitimate Traffic Generation

source: Pham et al., On Automatic Network Environment Cloning for Facilitating Cybersecurity Training and Testing, RESSI'18

Learning-based IoT Traffic Generation

source: Shahid et al., *Generative Deep Learning for Internet of Things Network Traffic Generation*, PRDC'20

32/37 2022/07/07

Synthetic traffic generation for robust network intrusion detection

Feature Space vs. Problem Space

Figure: Example of projection of the feature-space attack vector $x + \delta *$ in the *feasible* problem space, resulting in side-effect features η

source: Pierazzi, Pendlebury et al., *Intriguing Properties of Adversarial ML Attacks in the Problem Space*, S&P'20

Evaluating a Generator

Dataset, although synthetic, still requires a certain level of quality. Since no generally applicable evaluation method was available, we propose our criteria:

- Realism: a synthetic sample should be sampled from the same distribution as the real data
- Diversity: the distribution of the generated samples should have the same variability as the real data
- Originality: a generated sample should be sufficiently different from the samples of the real distribution
- Compliance*: generated network traffic must also conform to specifications, standards

source: Schoen et al., *Towards generic quality assessment of synthetic traffic for evaluating intrusion detection systems*, RESSI'22

Towards Traffic Morphing

Controlled traffic generation tool

Figure: Synthetic traffic generation

35/37 2022/07/07 G. Blanc (TSP, IP Paris)

Synthetic traffic generation for robust network intrusion detection

Future works

- in the feature space, realistic diverse and compliant generation of NetFlow flows, network packets and application payloads
- in the feature space, data-driven exploration of adversarial space
- in the problem space, generative network based generation of attacks using tools
- from feature to problem space, exploitation of traffic morphing
- development evaluation and explainability methodologies

Thank you for your attention!

