Blockchain-based security protocol for Domain Name system client identity protection

elloh.adja@rschain.net

July 7, 2022

Table of Contents

1. DNS

- 2. Related work
- 3. B-DNS

Table of Contents

1. DNS

- 2. Related work
- 3. B-DNS

The Domain name system (DNS)

The domain name system

- is a distributed computing service used to translate Internet domain names into IP addresses or other records.
- Needed by applications to communicate on internet
- It is hierarchical and insecure

The Domain name system (DNS)

Composed by:

- DNS client
- Local DNS Server
- Resolver
- Name servers

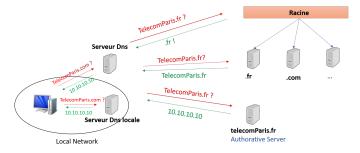
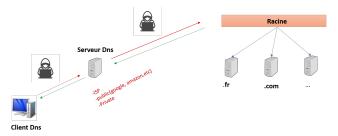


Figure: DNS request

Execution modes


There are two execution modes:

- Recursive
- iterative

DNS security

Attacker models

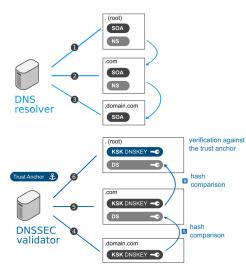
- malicious user
 - for espionage purposes
 - for identity theft
- ISP or DNS server provider
 - for commercial purposes
- Government or institution
 - for censure, mass surveillance

Table of Contents

1. DNS

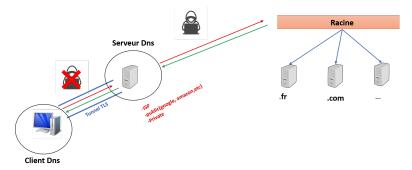
- 2. Related work
- 3. B-DNS

Existing solutions

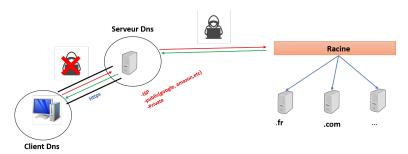

DNS security solutions:

- DNSSEC.
- DNS-over-TLS (DoT)
- DNS over https (DoH)
- DNSCrypt
- DNSCurve
- Namecoin
- Blockchain namespace (BNS)

DNSSEC


The solution is decribed by the RFC 4033

 for DNS request and DNS response authentication Cannot protect users privacy


Dns-over-TLS (DoT)

- It's a standard proposed by IETF in RFC 7858
- Allows DNS queries encryption through TLS protocol
- it provide:
 - confidentiality
 - data privacy from eavesdroppers
- Cannot provide users privacy

Dns-over-HTTPS (DoH)

- It's a standard proposed by IETF in RFC 8484
- Allows DNS queries encryption through HTTPS protocol
- Cannot protect users privacy from resolvers

DNSCRYPT and DNSCURVES

- DNSCrypt
 - ensures the confidentiality of queries between the resolver and the DNS client
 - uses signature to authenticate name servers responses
- DNSCurves
 - solutions for securing DNS Protocol using 256-bit elliptic-curve cryptography
 - provide confidentiality and protection from replay attack
- Cannot protect users privacy

Oblivious DNS over HTTPS (ODoH)

Les solutions de la sécurité doivent contribuées à satisfaire les critères suivants:

- standard solution proposed by IETF For DNS security
- It is an extension to DNS Over HTTPS (DoH)
- Allows:
 - hiding client IP addresses via proxying encrypted DNS transactions
- Introduce new intermediaries servers, so more complexity

NAMECOIN

- It is a Blockchain-based cryptocurrency that realizes a decentralized namespace
- used for domain-name resolution for the '.bit' alternative TLD, and by the online identity service
- it exploit somme blockchain features to provide
 - decentralization (resistant to single point of failure)
 - Immutability
 - Anonymity
- Blockchain namespace (BNS)
 - Proposed by Blockstack as a replacement of traditional DNS
 - It binds underlying Blockchain names and cryptographic key-pairs
- It are an DNS alternative system

Solutions comparison

Criteria	Confidentiality	Auth.	Privacy	Integrity.
DNSSEC		√		√
DNSCRYPT	✓		✓	
DoT	✓			✓
DoH	✓			✓
BNS			✓	✓
DNSCurve	✓			✓
ODoH	✓		✓	✓
Namecoin		✓		✓

Table of Contents

1. DNS

- Related work
- 3. B-DNS

Our solution B-dns

- Goal
 - New solution to secure traditional DNS system
 - Protect DNS users privacy
 - decoupling identity from the request
 - Avoiding traceability, censure and massive surveillance (ISPs, DNS servers providers, ecc.)
 - powered by a public Blockchain
 - high distribution (no single point of failure)
 - data integrity protection
 - transparency
- Attacker models
 - Attacker outside of victim network (eavedroppers)
 - The resolver of an intermediary between DNS client and nameservers

Blockchain solution constraints

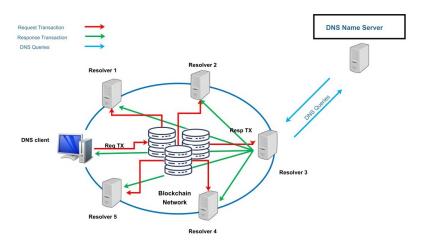
- Blockchain openness
 - Public
- Anonymity
 - effective o relative
- Cost
 - transactions cost

- Blockrate
 - competitive
- Consensus algorithm
- Data capacity
- Decentralization
 - Node distribution

Stats

DNS

- Average of 120k requests/s (ICANN)
- Average of 34 queries/h by single IP address (ICANN)
- Lookup average 20-120 milliseconds (Yslow)
- Average of message size 600 octets (ICANN)


Blockchain

- TPS: 7 3000
- Block time /h: 6 6000
- Network size: 5000 15000 nodes

Our solution B-dns

- Attacker models
 - Attacker outside of victim network (eavedroppers)
 - The resolver of an intermediary between DNS client and nameservers
- our solution
 - Works in a recursive way
 - Use of responses cache

Our solution B-dns

Data encapsulation

- No restrictions on transaction size
- Transaction data field allow all type of data

Figure: B-DNS data structure

Questions

Questions?

References I

- https://datatracker.ietf.org/doc/html/rfc4033
- https://www.internetsociety.org/deploy360/dnssec/tools/
- https://www.icann.org/resources/pages/dnssec-what-is-itwhy-important-2019-03-20-fr
- https://www.infoblox.com/glossary/dns-over-tls-dot/
- https://datatracker.ietf.org/doc/html/rfc7858
- Deep Packet Inspection, Jens Myrup Pedersen, Aalborg University
- https://www.akamai.com/fr/our-thinking/cdn/what-is-a-cdn
- https://www.avast.com/fr-fr/c-what-is-a-vpn