
VDMA @ Forschungsfabrik Karlsruhe, 22.06.2022gn—
open62541 - Secure by Design?
Dr.-Ing. Julius Pfrommer, Fraunhofer IOSB

Agenda

 Introduction
 What is OPC UA and why should you care?
 Security by design in the protocol
 Security by processes and tools used by the open62541 implementation
 Time for questions

Dr.-Ing. Julius Pfrommer

 Head of the research group “Distributed Cyber-Physical
Systems” at Fraunhofer IOSB
 Flexible Production Control
 Machine-Learning for Industrial Applications

 PhD in Distributed Planning for Self-Organizing
Production Systems

Activities (Excerpt)
 Scientific Director of the Competence Center for

Artificial Intelligence in Engineering (CC-KING)
(https://www.ki-engineering.eu/)

 Scientific Head of the Karlsruhe Research Factory
(https://www.forschungsfabrik-ka.de)

 University Lecture at KIT Karlsruhe:
Methods of Convex Optimization for ML and
Engineering

Contact
 julius.pfrommer@iosb.fraunhofer.d

e
 https://www.linkedin.com/in/

juliuspfrommer

https://www.ki-engineering.eu/
https://www.forschungsfabrik-ka.de/
mailto:julius.pfrommer@iosb.fraunhofer.de
mailto:julius.pfrommer@iosb.fraunhofer.de
https://www.linkedin.com/in/juliuspfrommer
https://www.linkedin.com/in/juliuspfrommer

4

The Bottleneck of Industrial Communication

5

Three Perspectives on OPC UA

Protocol

Object
Broker

Graph-
Database

Client-Server Protocol
 OPC UA defines a protocol for

request/response message exchange
 Message Encoding: Binary, JSON, XML
 Transport Protocols: TCP/IP,

Websockets, HTTP/S, (SOAP)
 TCP/IP + Binary Encoding is the most

common transport mechanism
Object Broker
 Objects live in a server-side

information model
 Dynamic changes to information

model
Graph-Database
 Introspection of the information

model
in a graph with typed relations

6

Why would you connect your robot to the outside
world?

7

Security Objectives and Attacks [OPC UA Spec, Part 2]

8

TCP/IP
 Possibility to use Software-Defined

Networking, VPN Tunnels, etc.
SecureChannel
 Security Modes

 None / Sign / Sign+Encrypt
 RSA for the handshake, AES at runtime

 Profiles with crypto suites updated
over time

 ECC-based encryption upcoming
 Validation of x509 Certificates

 Typical PKI backend similar to TLS

Session
 Different Authentication Mechanisms

 Anonymous / Username+PW /
Certificate

 Sessions are bound to a SecureChannel
 Sessions can switch to a new

SecureChannel

OPC UA Security Architecture

9

Protocol Audit (BSI)

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/OPCUA/OPCUA_2022.pdf

10

The open62541 Open Source OPC UA SDK

 Open Source OPC UA SDK (Server / Client / PubSub)
 Written in platform-independent C

 Linux, Windows, MacOS, Embedded, …
 Distributed as a open62541.c/.h file pair for easy integration
 License: MPLv2 (can be used in commercial projects)
 Large community, consistent development over time

11

We are doing everything wrong!

 Don‘t roll your own crypto
 Don‘t roll your own database
 Don‘t expose systems to the Internet
 Regularly update and maintain your

deployed system
 Don‘t write software in C!

 Use processes and tools to ensure code quality

12

The origin of open62541

 Developed since late 2013
 Core maintainers from 4

German research institutes
 ~8,500 commits from

>200 individual contributors

Picture: OPC UA Workshop & open62541 User Meeting (September
2015)

Support Partners

13

open62541 (example server) officially certified
 The example server from the v1.0

release was officially certified in
2019 by the OPC Foundation

 Hence, solutions based on that
release are certifiable (not
automatically certified)

 Certified Feature Set:
 Micro Embedded Server
 Encryption
 Methods
 Node Management

 Certification for the next set of
profiles intended for 2022

14

Extensive Documentation (~250 pages PDF or HTML)

15

Usage of open62541
Prototyping and Product
Development
 ~100k Downloads + git clones

+ Package Managers
 Commercial Support Partners
 BSI Survey 2021: Which OPC UA

stack / SDK is your product's OPC UA
implementation based on?
 17.86% open62541

Research

Language Bindings

Standardization
 OPC Foundation – FLC Prototyping
 umati
Large-Scale Physics Experiments
 Helmholtz ELBE
 CERN LHC
 European Southern Observatory's Very

Large Telescope

 Perl
 TCL
 C++

 Python
(unreleased)

 Lua (unreleased)

Particle Accelerators

16

Community Contributions
 Outside contributions are highly

welcome
 No Copyright Assignment Form

or membership required to
contribute code
 Signing of the CLA required to

assure legal backing of the
contribution

 Code reviews
 Changing the code is easy. Changing the public API is hard.
 Talk to us early about the API!

 Regular community conference calls to sync, align priorities and avoid double
work

 Code Style & Commit Hygiene Guideline (CONTRIBUTING.md)

17

The Technical Architecture of open62541

Datatype Handling
(Binary, JSON)

Architectures /
EventLoop

(Networking, Timers,
etc.)

SecureChannel

OPC UA Stack

Server
Core

Client
Core

PubSub
Core

Configuration Layer
Plugins

(Crypto, Nodestore,
Access Control, ...)

Userland Integration
(Callbacks) Configuration Parsing

18

Keeping open62541 lean and mean (w/o generated
code, tools)Statistics files blank comment code

/include/* 21 1092 3370 4808

/src 16 1461 1286 8904

/src/client 6 626 388 3515

/src/server 32 2888 3107 16446

/src/pubsub 12 1214 1099 7762

/plugins 13 651 742 3861

/plugins/crypto/mbedtls 7 778 301 3350

/plugins/crypto/openssl 7 715 222 3583

/tests 117 6710 3272 33753

/examples 77 2226 2704 13207

19

Code Quality Measures
 Every Pull Request has to pass the CI

pipeline
 Unit and integration tests (80% coverage)

 Compilers: GCC, Clang, TCC, MSVC
2008+,
No warnings allowed

 Compiles both as C and C++
 Different standard libs:

glibc, musl, MSVC CRT
 Crypto: mbedTLS, OpenSSL

 Static code analysis: Clang Analyzer,
Cppcheck

 Runtime sanitizers: Valgrind, Address
Sanitizer,
Memory Sanitizer, UB Sanitizer, …

 Fuzzing (Google oss-fuzz)

 Official Conformance Testing Tools
 Provided by the OPC Foundation

for corporate members
 Security audit perfomed as part of

a BSI project

20

Code Audit Results German Federal Office for Information Security (BSI)

Claroty Research Responsible Disclosure

Automated Fuzzing Infrastructure

Bild kann bei Bedarf durch Klicken auf Symbol ausgetauscht werden

Contact—
Dr. Julius Pfrommer
Head of the Research Group
„Cyberphysical Distributed Systems“
Phone +49 721 6091-286
Fax +49 721 6091-413
julius.pfrommer@iosb.fraunhofer.de

Thank you for the attention!

https://de.linkedin.com/company/fraunhofer-iosb
https://twitter.com/FraunhoferIOSB
https://www.youtube.com/channel/UCqEHGE2l7vRxHLfkEgrwn0g

	Slide 1
	Agenda
	Dr.-Ing. Julius Pfrommer
	The Bottleneck of Industrial Communication
	Three Perspectives on OPC UA
	Why would you connect your robot to the outside world?
	Security Objectives and Attacks [OPC UA Spec, Part 2]
	OPC UA Security Architecture
	Protocol Audit (BSI)
	The open62541 Open Source OPC UA SDK
	We are doing everything wrong!
	The origin of open62541
	open62541 (example server) officially certified
	Extensive Documentation (~250 pages PDF or HTML)
	Usage of open62541
	Community Contributions
	The Technical Architecture of open62541
	Keeping open62541 lean and mean (w/o generated code, tools)
	Code Quality Measures
	Code Audit Results
	Slide 21

