$)

Kprobes internals

Thomas Bitzberger
bitz@Ise.epita.fr

Security
SSSSSS

Laboratory of Epita

What are kprobes

“Kprobes enables you to dynamically break into any kernel routine and
collect debugging and performance information non-disruptively. You
can trap at almost any kernel code address, specifying a handler
routine to be invoked when the breakpoint is hit.”

From Documentation/kprobes.txt

They were introduced in 2.6.9 (Oct. 2004).

SSSSSSSS

Laboratory of Epita

What are kprobes

Activated by default on many distributions (ArchLinux, Debian, ...).
Can be (de)activated in sysfs:
‘echo 1 > /sys/kernel/debug/kprobes/enabled

Requires ‘CONFIG_KPROBES' during kernel build.

SSSSSSSS

Laboratory of Epita

Why this

- It's interesting (at least for me...)

- Projects from the lab using kprobes

- Kprobes implements stuff | needed for other purposes
- Nicely engineered mechanisms to present

SSSSSSSS

Laboratory of Epita

Different probes

1) Kprobes
2) Jprobes — Function entry
3) Kretprobes — Function entry (optional) + Function return

Jprobes and Kretprobes are implemented using kprobes.

There are instructions/functions that cannot be probed.

SSSSSSSS

Laboratory of Epita

Kprobes

How it works:

1)
2)
3)
4)
5)
6)

Save probed instruction
Replace instruction by a breakpoint

When BP is hit, kprobe pre handler is executed.

The original instruction is single-stepped
Kprobe post_handler is executed if any
Function execution resume

SSSSSSSS

Laboratory of Epita

Kprobes

typedef int (*kprobe pre handler_t)(struct kprobe *, struct pt_regs *);
struct kprobe {

kprobe opcode t *addr;

const char *symbol _name;

kprobe pre handler_t pre _handler;

kprobe post _handler t post handler;

kprobe fault handler _t fault handler;

kprobe break handler _t break handler;

struct arch_specific_insn insn;

./

ecuri
System

I
Laboratory of Epita 7

Kprobes registration

You must give at least an address and an offset, or a symbol in kallsyms.
When you call ‘register_kprobe’, it basically does:

1) check addr _safe() // check if addr can be probed
2) prepare_kprobe() I/ copy probed instruction
3) arm_kprobe() // insert the breakpoint

SSSSSSSS

Laboratory of Epita

prepare kprobe

- Need to save the original instruction !

- Kernel uses executable page(s) to store probed instructions.
- The max instruction size is always copied.

- Adjusts rip-relative instructions if needed.

If you're interested, the kernel uses custom cache allocation to get executable
slots for probed instructions.

Look in ‘kernel/kprobes.c’, ‘include/linux/kprobes.h’, or simply “grep -Hnr ‘struct
kprobe insn_cache”™

SSSSSSSS

Laboratory of Epita

Fixmaps
From the header (arch/x86/include/asm/fixmap.h):

“The point is to have a constant address at compile-time, but to set the physical
address only in the boot process.”

- Represented as an enum

- Fixed size 4k pages

- Not flushed from TLB during task switch
- set_fixmap(idx, phys addr)

- set_fixmap_nocache(...)

SSSSSSSS

Laboratory of Epita

Fixmaps

static __always_inline unsigned long fix_to_virt(const unsigned int idx)

{
BUILD BUG_ON(idx >= ___end_of fixed_addresses);

return __ fix_to_virt(idx);

}

Returns the virtual address for a given fixmap.

Completely done at compilation time thanks to optimization.

arm_kprobe

Last thing to do is to insert the breakpoint (int3 — Oxcc on x86).
It is done by text poke() (arch/x86/kernel/alternative.c)

1) Disable local interrupts

2) Get a RW shadow mapping using TEXT_ POKE{0,1} fixmaps.

3) Insert breakpoint atomically (writing a char there)

4) Clear the fixmap and flush TLB

9) Invalidate icache and prefetched instructions (IRET-to-Self)

6) Invalidate data cache

7) Re-enable local interrupts LE

8) kprobeisamed! 0 T

What happens now

. kprobes_int3 User
do_int3 handler pre_handler
do_debug sinale-ste) setup
(do_int1) 9 P single-step
post_handler resume

(if any) (IRET)

ecuri
System

I
Laboratory of Epita 1 3

Single-stepping on x86
To single step the instruction:

1) Clear Branch Tracing in DEBUGCTL MSR
2) Enable Trap Flag in RFLAGS
3) Let'sgo!

SSSSSSSS

Laboratory of Epita

Jprobes

- Kprobe on function entry point

- The given handler has same signature as the probed function
- Handler must always end by ‘jprobe _return()’

- Uses kind of a setjmp/longjmp trick

- Jprobes uses it's own pre_handler and break handler.

SSSSSSSS

Laboratory of Epita

Jprobes

struct jprobe {
struct kprobe kp;
void *entry; /* probe handling code to jump to (handler) */

It
Init example:

static struct jprobe my_jprobe = {
.entry = j_do_fork _handler, // our handler

kp ={
.symbol_name =" do_fork",

},

}' eeeee
J System

I
Laboratory of Epita 1 6

How It works

When the jprobe is hit, it first prepares to execute the user handler:

1)
2)
3)
4)
5)
6)

Breakpoint is hit

kprobe int3_handler calls ‘setimp_pre_handler()’
Registers and part of the stack are copied

IP is set to the given handler

setjimp_pre_handler() returns 1 — No single-stepping now
IRET on handler

SSSSSSSS

How It works

How the function is resumed:

1)
2)
3)
4)
5)
6)
7)

The handler ends by jprobe return() // restore stack pointer + int3
There’s no kprobe at this address !

Kprobe manager looks in a Per-CPU saved state

Calls the ‘longjmp_break handler()’ // restore stack + regs
Single-step probed instruction

do_debug — optional post _kprobe handler

Resume — IRET

SSSSSSSS

Execution of a JProbe

do_int3

setjimp_pre_handler
(save state)

single-step

User handler

longjmp_break_handler
(restore state)

do_debug

jprobe_return()
(int3)

post_handler ?
+

resume execution

ecuri
System

I
Laboratory of Epita 1 9

Kretprobes

- Kprobe on function entry

- User can provide two handlers

- One is called at entry, the other just before returing
- You can keep state between entry and exit handler
- Works with a trampoline system

SSSSSSSS

Laboratory of Epita

Kretprobes

typedef int (*kretprobe handler t) (struct kretprobe_instance *, struct pt_regs *);

struct kretprobe {
struct kprobe kp;
kretprobe handler_t handler;
kretprobe handler t entry handler;
iInt maxactive;
size t data_size;

./

http://elixir.free-electrons.com/linux/latest/ident/pt_regs

Kretprobe instance

struct kretprobe _instance {

struct hlist_node hlist;
struct kretprobe *rp;

kprobe opcode t *ret_addr;
struct task_struct *task;
char data[0];

/[instance hash table
// kretprobe

/[saved return address
/[probed task

/[pointer to user data

How It works

1)
2)
3)
4)
5)

Breakpoint is hit

Kretprobe pre handler is called

It saves the function return address

It modifies the return address on the stack

The function now returns to kretprobe trampoline

SSSSSSSS

Laboratory of Epita

Kretprobe trampoline

asm (

".global kretprobe trampoline\n"

".type kretprobe trampoline, @function\n"
"kretprobe trampoline:\n"

/* We don't bother saving the ss register */

" pushqg %rsp\n"

pushfg\n"

SAVE_REGS_STRING

) movq %rsp, %rdi\n"

call trampoline_handler\n"

/* Replace saved sp with true return address. */
) movq %rax, 152(%rsp)\n"
RESTORE_REGS_STRING

N popfg\n"

ret\n"

".size kretprobe trampoline, .-kretprobe trampoline\n"

System
I

Laboratory of Epita

24

Kretprobes in action

: Kretprobe Kretprobe
CONDE pre_handler entry_handler
do_debug Save RA
+ single-step +
resume Modify RA
\ X
trampoline UrE el Kretprobe
\ handler \ handler
4 3 -l

\ 5 - real caller

Laboratory of Epita

Optimization time

The presented implementation is perfectly working.

However, for every probe, you do at least an int3 and an int1.

In some cases, kprobes can be optimized to avoid this.
The breakpoint is then replaced by a relative jump.

It requires ‘CONFIG_OPTPROBES’ during kernel build.

SSSSSSSS

Laboratory of Epita

Optimization time

Optimization is done after kprobe registration (BP insertion).

Primary conditions to optimize:

Probed region lies in one function
The entire function is scanned to verify that there’s no jump to the probed

region
Verify that each instruction in the probed region can be executed out-of-line

SSSSSSSS

Detour buffer

Kprobe manager prepares a trampoline containing:

Code to push CPU’s registers (emulates BP trap)
Calls a trampoline handler which calls the user handler
Code to restore CPU’s registers

The instructions from optimized region

A jump back to the original execution path

SSSSSSSS

Laboratory of Epita

Detour buffer

It is an assembly generic template that each optprobe copies.
This template will be patched with the right instructions.
Each optprobe has finally its own trampoline.

That’s because it uses rip-relative instructions (call and jmp).

SSSSSSSS

Laboratory of Epita

Pre-optimization
After preparing the trampoline, kprobe manager verifies:

- It's not a jprobe I/ setimp/longjmp will not work
- It has no post_handler // no more single-stepping
- Optimized instruction are not probed

If it's ok, the probe is placed in a list.

Kprobe-optimizer workqueue is woken up.

SSSSSSSS

Laboratory of Epita

asm (

"optprobe template_entry:\n"

/* We don't bother saving the ss register */

y pushq %rsp\n"

pushfg\n"

SAVE_REGS_STRING

y movq %rsp, %rsi\n"

"optprobe template val:\n"

ASM_NOPS5// mov $optprobe, %rdi

ASM_NOP5

"optprobe template call:\n"

ASM_NOPS5// call optimized_callback(optprobe, regs)
/* Move flags to rsp */

" movq 144(%rsp), Y%ordx\n"

) movq %rdx, 152(%rsp)\n"
RESTORE_REGS_STRING

/* Skip flags entry */

" addq $8, %rsp\n"

. popfg\n"

"optprobe template_end:\n"); // patched insn + jmp

Security
System
I

Laboratory of Epita

31

Optimization
Once the trampoline is ready, the BP is replaced by a reljmp.
It's a five bytes length instruction.

The jump is inserted using text _poke bp() function.

(arch/x86/kernel/alternative.c)

SSSSSSSS

Laboratory of Epita

Optimization
void *text_poke bp(void *addr, const void *opcode, size t len, void *handler);

How it works:

1) Add an int3 trap to the patched address

2) Sync cores

3) Update all but the first byte of the patched range
4) Sync cores

5) Replace the first byte (int3)

6) Sync cores

7) Done!

ecuri
System

I
Laboratory of Epita 33

Optimized probe

Return to
trampoline

Call
Jump to
trampoline ADrElorE
P pre handler
Resume .ngp ©
original func

Original
instruction

ecuri
System

I
Laboratory of Epita 34

The end

If you are interested:

- Documentation/kprobes.txt

- arch/x86/kernel/kprobes/*

- kernel/kprobes.c

- include/linux/kprobes.h

- samples/kprobes/*

- hitps://lwn.net/Articles/132196/ /I small intro to kprobes

- htip://phrack.org/issues/67/6.html // doing shit with kprobes
- Man intel

https://lwn.net/Articles/132196/
https://lwn.net/Articles/132196/
https://lwn.net/Articles/132196/
https://lwn.net/Articles/132196/
http://phrack.org/issues/67/6.html
http://phrack.org/issues/67/6.html
http://phrack.org/issues/67/6.html
http://phrack.org/issues/67/6.html

Thank you !

