CAN STRACE
MAKE YOU

https://twitter.com/brokenpi_pe

& DEFINITION 1.0

strace is a diagnostic, debugging and
instructional userspace utility for Linux. It is
used to monitor interactions between
processes and the Linux kernel, which
include system calls, signal deliveries, and
changes of process state.

£ TESTS

codebases sometime have:

o complex code paths (because of the size, design
choices...)
e untested error handlers

[FAULT INJECTION TO
THE RESCUE

In software testing, fault injection is a
technique for improving the coverage of a
test by introducing faults to test code
paths, in particular error handling code
paths, that might otherwise rarely be
followed.

|~ BENEFITS

e Better tests
e Beller coverage
e Fuzzing?

STRACE FAULT
INJECTION

Here we tamper with syscalls, thanks to ptrace(2).
Inspiration comes from seccomp:

/* arch/x86/entry/common.c */
unsigned long
syscall trace enter phasel (struct pt regs *regs, u32 arch)

{

VA
(ret == SECCOMP_ PHASE1 SKIP) {
regs->orig ax = -1;
ret = 0;
} (ret != SECCOMP_PHASE1l OK) {
ret; /* Go directly to phase 2 */
/) e]

}

Changing syscall number on the fly by -1 vaporizes it... s

=) STRACE INTERNALS
(1/2)

o Using PTRACE SYSCALL strace get {pre,post}-syscall hook
e Around this simple concept tons of bookkeeping
information are kept

static int
trace syscall entering(struct tcb *tcp)

{
/%
* Conditionaly setup the faulting state
* Call the arch dependant part to discard the syscall

*/

static int
trace syscall exiting(struct tcb *tcp)
{
/ *
* Clear the faulting state
* Call the arch dependant part to set the correct errno

L] ARCH DEPENDANT

The trick does require some arch dependant code to modify
registers accordingly: Here is the x86 64 version of it:

long
fault discard sc(struct tcb *tcp) {
ptrace (PTRACE POKEUSER, tcp->pid,
offsetof (user, regs.orig rax),

(=105

A POC

Sample program, no tampering:

build/strace -e kill ./dummy

Can you get the flag before I kill myself?
kill (3802, SIGKILL <unfinished ...>

+++ killed by SIGKILL +++

Preventing suicide?

Can you get the flag before I kill myself?
k111 (4320, SIGKILL) = -1 EINVAL (DISCARDED)
lse week{Faults Injection Can Save lives}
+++ exited with 0 +++

& DEFINITION 1.1

strace is a diagnostic, debugging and
instructional userspace utility for Linux. IE is
used to monitor and tamper with
interactions between processes and the
Linux kernel, which include system calls,
signal deliveries, and changes of process
state.

10

Y FILTERS (1/2)

Let's say we don't want our target to be able to open the
First file it opens. We can't discard every open(2) out there...

hello.c (ie without open(2)in the code)

open ("/etc/ld.so.cache”", O RDONLY|O CLOEXEC) = -1

open ("/usr/1lib/tls/x86 64/libpthread.so.0", O RDONLY|O CLOEXEC) = -1
open ("/usr/lib/tls/libpthread.so.0", O RDONLY|O CLOEXEC) = -1

open ("/usr/1lib/x86 64/libpthread.so.0", O RDONLY|O CLOEXEC) = -1
open ("/usr/lib/libpthread.so.0", O RDONLY|O CLOEXEC) = -1

./hello: error while loading shared libraries: libpthread.so.0:
cannot open shared file: Invalid argument

+++ exited with 127 +++

Y FILTERS (2/2)

v X

nth after nth
every nth before nth
N%

Mainly parsing & tests...

Y¥ BUGS FOUND?

Yes. The first real world test | made was with Python 3.5.1:

Fatal Python error: Failed to open /dev/urandom
-—— SIGSEGV {si signo=SIGSEGV, si code=SEGV_MAPERR, si addr=0x50} ---
+++ killed by SIGSEGV (core dumped) +++

Message: Process 9427 (python) of user 1000 dumped core.

Stack trace of thread 9427:

#0 0x00000000005015a3 PyErr Fetch (python)

#1 0x000000000051fdc6 Py PrintFatalError (python)
#2 0x0000000000520099 Py FatalError (python)

#3 0x0000000000520d6a dev _urandom noraise (python)
#4 0x000000000052122f PyRandom Init (python)

#5 0x000000000041e119 Py Main (python)

#6 0x000000000041a71f main (python)

#7 0x00007fb51daab741 libc start main (libc.so.6)
#8 0x000000000041a449 start (python)

Does Py FatalError() throw a SIGSEGV? Intuitively, no.

PYTHONS3 (1/3)

Seems something went wrong in the middle of it because:

/* Print fatal error message and abort */

void
Py FatalError (const char *msg)
{
VA I
exit:
#1f defined (MS WINDOWS) && defined(DEBUG)
DebugBreak () ;
#endif
abort () ;

14

PYTHONS3 (2/3)

Found NULL dereferences because no checks are made on
the return of PyThreadState GET()

void
PyErr Fetch (PyObject **p type, PyObject **p value, PyObject **p tracebac

{
PyThreadState *tstate = PyThreadState GET () ;

p type = tstate->curexc type; / <-- HERE */
p value = tstate->curexc value; / <-- AND HERE */
p traceback = tstate->curexc traceback; / <-- OR HERE */

tstate->curexc type = NULL; /* <-- ALSO HERE */
tstate->curexc value = NULL; /* <-- STILL HERE */
tstate->curexc traceback = NULL; /* <-- You get it... */

15

PYTHONS3 (3/3)

corrected between Python 3.5.1 & Python 3.6.0a2+

getrandom(0x916930, 24, GRND NONBLOCK) = -1 EINVAL (DISCARDED)
Fatal Python error: getrandom() failed

--—- SIGABRT {si signo=SIGABRT, si code=SI TKILL, si pid=4127, si uid=10(
+++ killed by SIGABRT (core dumped) +++

They also discovered getrandom() from & v3.17-rc1 and
reading raw /dev/urandom is now a fallback.

16

c® TRY IT YOURSELF!

Because it's fun, sometimes it's also worth some SS:

e Search for common mistakes
e wait for the fuzzy logic to be implemented

So wWhat is a common mistake?

17

A BLIND TRUST (1/2)

66 If open(2) worked, fstat(2) will.
Nope.

stat fs;

int main (int arc, char *argvl[])
{
/* ... */
((fd = open(argv[1l], O RDONLY)) < 0)
perror ("main") ;

fstat (£fd, &fs);
printf ("%1d\n", file size);
do file histogram(fd, hist);
(i=0; 1K< (hist); ++1)
hist[i] /= fs.st size; /* Histogram normalization */

/* .. x/

0;

& BLIND TRUST (2/2)

$ strace
fstat (4,
fstat (4,
fstat (4,
fstat (1,

Here is the result of abusive trust:

-a0 -e fstat -e faultwith=fstat:3:EINVAL ./fstat tags

{st mode=S IFREG|0644, st size=257742, ...}) =0

{st mode=S IFREG|0755, st size=1960968, ...}) =0
0x600c00) = -1 EINVAL (DISCARDED)

{st mode=S IFCHR|0620, st rdev=makedev (136, 11), ...}) =0

-—-—- SIGFPE {si signo=SIGFPE, si code=FPE INTDIV, si addr=0x400734} ---
+++ killed by SIGFPE (core dumped) +++

[2] 8604 floating point exception (core dumped)
Remember?
(i =0; 1K< (hist); ++1)

hist[i] /= fs.st size; /* Divide by zero (fs was in the bss) */

19

META IMPR:“VMENT

e |n strace the main work is parsing

e SO you have to test your parser

e How do you test tricky syscalls like reboot(2)?

e How to test an joct{ without having the behavior?

20

[ENOMANA

int reboot (int magic, int magic2, int cmd, void *argqg);

ERRORS
[...]

EINVAL Bad magic numbers or cmd.

e |t does not seem very efficient to actually issue a
reboot(2) to test it.

o With the fFault injection we can actually parse and test it
hence improving the code coverage

21

(JIOCTL BLACK BOX

e We can't use -1 as a file descriptor

e So we need a real file descriptor

e But we don't want the real behaviors
e What can we do?

® CONCLUSION

e A lotof flaky, often untested patterns in the wild
e Fun and promising strace option
e some work is still needed for simpler usability

23

© QUESTION

N

N1
>_ Naam@irc.rezosup.org

https://twitter.com/brokenpi_pe
https://brokenpi.pe/
mailto:nahim+dev@naam.me

