Do Machines Dream of Binary Files

Laboratory of Epita

Marwan Burelle - LSE Summer Week 2016

We want to classify binarwares.

SO YOU WANT TO DO MALWARE ANALYSIS ?

TELL ME MORE ABOUT THAT ...

Let's try deep learning ...

Deep Neural Networks

Learning Distances

Can I build a graph using a deep NN ?

Graph Clustering

Problem

- **Entity:** vector of features
- Goal: a graph of entities
- Distance: the cost on edges
- How can we compute distance ?
- > Which edges should we keep ?

First pass

- Classic distances don't work
- > Weighted means, a little better but not enough
- > Our problem is non-linear !

Pre-labeled data and non-linear function ?

Use Deep-Learning !

A NN for distance

Regression problem
Reference value for d:

- same class: 0
- different class: 1

Deep network:

- 3 Dense layer
- ReLu activation
- mean squared error
- Adam optimizer
- use dropout

Cut value

- Clustering needs sparse graph
- > Which edges should we kept ?
 - Compute a cut-value
 - Remove edges with higher cost
- Good cut value ?
 - mean, median ... not really accurate
 - mean of means:
 - compute means of in-class and out-class edges
 - use mean of these two means
 - yields good results

Example: wine data

- > Wine chemical data
- ➤ 3 classes
- > 178 samples
- > 13 features
- > tailored for ML testing

Example: labeled malware

- Training dataset
- Extracted from 10868 files
- > 9 classes (malware families)

Remaining Issues

- > Need to generate all possible edges
 - on malware samples: 118,113,424 edges (13GB) !
 - solution ? stream samples, work on subset ...

Features are important too

- features used for malware were not accurate
- solution ? better features extraction ...

Can we use deep learning to extract features ?

I want to see that ...

Recurrent NN

Going Recursive

Recurrent layer:

Input: current value + previous output

We'll use Long Short Term Memory RNN (LSTM)

Yeah we can have sequence inputs !

LSTM/RNN success

- > English to French translation
- > Text generation
- Structured text generation
- > Function boundaries in binary files

Can we use LSTM to extract features ?

The problem

- > Take arbitrary sequence of bytes
- > Extract a finite set of features
- > The set should provides good result for distance

Auto-encoders

Basic model

What for ?

- > Pre-training layer
- > Data Denoising
- Dimensionality reduction

OK, What can we do with that ?

Sequence Auto-encoders

- Use LSTM layers as input and output
- > Add a dense cumulating layer between them
- > Rebuild sequence
- > We have our feature extractor !

Binary file auto-encoder

Sequence length ?

Repeat layer forces uniform sequence length

➤ Solutions ?

- Multiple AE for each length
- Padding all sequences to same length
- Extra input

Extra input for repeat

Classifier for extraction

Results

Basic C codes

> 5 simple C codes

- hello world
- integer square root
- factorial (iterative)
- quicksort
- quick median
- > 8 compilers option sets
- > Extracted .text section
- Classes: original source code
- > 32 features extracted
- graph built using our distance NN

Students' Code

Data:

- > 18 questions
- > 269 students + reference code
- > 4164 .text sections extracted from object files
- > Labeled by questions
 - **Classification Results:**
 - 4155 correctly classified files
 - error rate: 0.213 %

Students Code Graph

> classifier encoder \succ 1239 vertices ➤ 43534 edges > Not fully connected > 18 communities

Partial Knowledge

- > Auto-encoder
- > 14/18 classes for AE training
- Encode all classes
- > 20 epochs of edge training

Partial Knowledge (2)

- > Auto-encoder
- > 14/18 classes for AE training
- Encode all classes
- > 40 epochs of edge training

Security System

And malware ?

- Much longer computation
- Results for 10% of database
- Encoding using classifier
- > Not much epoch

And malware ?

- Much longer computation
- Results for 10% of database
- Encoding using classifier
- > Not much epoch
- Another view of the graph

Questions ?

