
Linux Boot Process

Nassim Eddequiouaq
LSE Summer Week 2015



Why does boot matter ?

No boot… No boot !

OS uses evolving hardware features

Faster and more secure please



What does Linux need ?

Hardware initialization

Bootloader loading the kernel

Initialize arch-dependent and basic features

Setup interrupts, memory management, SMP… 



Boot logic

Before the operating system

Backward compatibility

OS boot process is specific

Setup and hooking features

… Linux Boot Protocol



Boot steps

The bootloader

Kernel setup

Long mode

Decompression and jump to kernel code



Bootloaders

Responsible for loading and transferring control to the kernel

➢ UEFI
➢ Legacy

➢ LILO
➢ GRUB2
➢ SYSLINUX



GRUB2 boot sequence



x86 Architecture

4 Modes :

➢ Real mode
➢ Protected mode
➢ V8086 mode
➢ Long mode



Linux Boot Protocol

Build-time parameters :

➢ setup code size

Bootloading-time parameters :

➢ command-line parameters and size
➢ initrd max address



Linux image format

The bzImage



Linux boot protocol for bzImage 

4 entry points :

1. Real mode (16-bit)
2. Protected mode (32-bit)
3. Long mode (64-bit)
4. Final kernel entry (vmlinux decompressed)



The bootloader

Implement the Linux Boot Protocol

Get and load kernel modules

Fill the kernel setup header at the right address

Jump to the kernel entry point



Kernel setup header



Kernel memory map



Protocol Requirements

➢ Kernel usually loaded at 1MB (any position if relocatable, 
fixed if not)

➢ cs (and loaded GDT) must be __BOOT_CS
➢ ds, es and ss must be __BOOT_DS
➢ esi has the struct boot_params address
➢ ebp, edi and ebx must be 0
➢ Interrupt disabled



Finally in Linux

ifdef CONFIG_EFI_STUB then linux is a PE

_start and start_of_setup



Before boot main (legacy)

➔ check the segment registers
➔ setup a stack if needed
➔ setup the bss
➔ jump to boot main



Problem



Kernel setup (legacy)

➢ Copy boot header in the “zeropage”
➢ Init console and heap
➢ Check CPU and memory
➢ Queries (MCA, IST..)
➢ Set video mode
➢ Set Protected mode



Set protected mode (legacy)

Hook before leaving Real mode

Enable A20 gate

Reset coprocessor

Mask interrupts

GDT/IDT setup



Hooks

Used in hostile environment (DOS) by the bootloader

boot_params.hdr.realmode_swtch 16-bit Real mode far 
subroutine that disables NMI

Last resort !



32-bit entry point
arch/x86/boot/compressed/head_64.S

startup_32 subroutine

Offset 0



32-bit to 64-bit

➢ Keep/Reload Segments
➢ Setup a stack and check long mode support
➢ Calculate reloc addr for decompression
➢ Update GDT for 64-bit and PAE in cr4



Long mode
Native mode for x86_64 processors

Flat segmentation

Compatibility mode

64-bit registers, addresses and operands

MOAR REGISTERS



Switch to 64-bit mode

Enable PAE (done)

Build PTs, update cr3 and EFER.LME in MSR

Enable paging



Jump to long mode 
Set EFER.LME flag in MSR 0xC0000080 (done)

Push kernel cs

Push startup_64 routine

Set PG and PE in cr0

lret to startup_64



64-bit entry

startup_64 subroutine

Offset 0x200

Some bootloaders jump here directly (need identity 
mapped PT for kernel, zero page and commandline)



CONFIG_EFI_STUB
Allows bzImage to be loaded directly by EFI fw

Entry point is efi_pe_entry()

Setup boot params, startup_32

efi_main()



Kernel code decompression

➢ Compute decompressed kernel start address
➢ Setup a heap/stack and copy the compressed kernel
➢ Clear bss
➢ decompress_kernel()
➢ Parse ELF header, load sections and jump !



Yet another entry point

Real kernel code



Beyond vmlinux entry point

Jump to startup_64

Fix physical addresses in the PT

Setup identity mapping

Enable PAE and PGE in cr4

Update cr3

start_kernel()



start_kernel()

Almost 150 initialization functions

Takes no args

Expect a specific and complex state



What else before init ?
Locks

Threads

SMP

Scheduling

RCU

Proper interrupt handling, etc..



EFI Runtime Services
efi_enabled(EFI_RUNTIME_SERVICES)

EFI Runtime Services Table



Conclusion

Not much recent changes to boot

UEFI bootloaders (GRUB2, Linux kernel EFI Stub)

Making an adaptive bootloader is not that easy

EFI offers a “good” and complete API



Question ?

(Thanks for listening !)



References

➔ Linux 3.18
➔ Thanks @free-electrons.com for lxr 
➔ GRUB 2
➔ Intel® 64 and IA-32 Architectures Software Developer Manual
➔ Linux Boot Protocol @ kernel.org
➔ UEFI wiki @ phoenix.com

https://www.kernel.org/doc/Documentation/x86/boot.txt
https://www.kernel.org/doc/Documentation/x86/boot.txt
http://wiki.phoenix.com/wiki/index.php/UEFI
http://wiki.phoenix.com/wiki/index.php/UEFI

