
STOS, what’s new?
Gabriel Laskar <gabriel@lse.epita.fr>

Jérémy Lefaure <blatinox@lse.epita.fr>

What is STOS?

● A toy operating system
● Modular
● A teaching & experimenting tool

Main principles of the STOS kernel

● Monolithic kernel
● Modular architecture
● (probably) Multi-architecture
● Simple.

Emphasis on simple

● No surprises
● When in doubt, mimic the linux kernel APIs.
● Still some differences with a classic unix kernel

mkdir(3)

/*
 * In stos, mkdir can be emulated with open,
 * so use it instead of creating another syscall.
 */
int mkdir(const char* pathname, mode_t mode)
{

int fd = open(pathname, O_CREAT | O_DIRECTORY | O_EXCL, mode);
if (fd < 0)

return fd;
close(fd);
return 0;

}

signals

● no signals planned in stos
● use something like signalfd(2)
● have 4 file descriptors opened by default
● still not implemented, we need to have:

○ poll(2)
○ threads in userland

mknod()

● devfs is populated by the kernel
● every instance of a driver are in separate directory:

○ com devices (serial lines) lives in “/dev/com/[1-4]” for pc

STOS is now used for a kernel course!

What have been done this year

● initramfs (Paul Hervot)
● command line (Paul Hervot)
● testing modules (Louis Feuvrier & Gabriel Laskar)
● porting stos to other architectures

○ arm (Jérémy Lefaure)
○ galileo (GISTRE)

● acpi (Gabriel Laskar)
● virtio (Nahim El Atmani)

Testing the STOS kernel

● We now have a simple test module
● Some tests have been done (essentially for the course)

/**
 * register_gtest - register a global test to be executed by the test suite
 * later on in the boot process.
 *
 * @name: name of the test (will be copied)
 * @test: test function
 * @data: data to be passed to test function at execution
 * @failure: failure function to be executed when the test fails.
 */
int register_gtest(const char *name, void (*test)(struct gtest*), void *data,

void (*failure)(struct gtest*));

STOS on ARM

● Theoretically multi-architecture: PowerPC, Sparc64,
ARM, x86 and x86_64

● Only x86 is really maintained
● Learning about kernel programming and ARM

architecture

Kernel development on ARM

● A lot of different versions
● Different features
● Each board has its own memory map
● Linux uses device tree

BeagleBone Black

● Processor: AM3358
● ARM Cortex-A8
● 512MB SDRAM
● Cheap (~55$)

Build system

● Quite complex
● Used only for x86 target for a long time
● ARM Toolchain
● All modules in kernel mode
● Bootloader (stage 3) and kernel in one file

Stage 3

● u-boot => stage 3 => STOS core
● standalone program
● provides memory segments
● load kernel core (ELF)
● enable pagination

Current paging state

0x80000000

0x80400000

0xC0000000

0xC0400000

0x80400000

0x80000000

Physical Address Space Virtual Address Space

0x44f08000
0x44e08000

0x44f08000
0x44e08000

Core

● Most of arch independant code (klog,...)
● Linker script
● Serial console for klog
● Backtrace

Interrupts

● Reuse old ARM code
● Fix code
● Simple API to add or remove handlers
● Should be different depending on SoC

Pagination (WIP)

● Reuse the frame allocator
● Like i386 pagination
● Arch-dependant code to write (i.e invalidate page)
● Snippets exist

TODO

● Jump to userland
● Drivers (GPIO, I2C,...)
● Other boards?

Intel Galileo

Goals

● PFE for GISTRE students
○ Zackary Ayoun
○ Matthieu Simon

● EFI support
● Support for the Quark x1000 SOC
● Consolidation of the STOS kernel

How to reboot an OS?

● triple fault
● keyboard
● strange ioport in some bios
● apm
● acpi

Multiple usage for ACPI in STOS

● Discover devices
○ rewrite the device tree with it
○ use it to discover PNP devices

● Sleep states
○ reboot, duh !

What is still needed

● kernel thread apis
● better dependency handling
● kernel and userland timing apis
● rework device apis
● rework smp support
● poll()
● mmap() with files

