STOS, what's new?

Gabriel Laskar <gabriel@Ise.epita.fr>
Jérémy Lefaure <blatinox@lse.epita.fr>

SSSSS

What is STOS?

e A toy operating system
e Modular
e A teaching & experimenting tool

SSSSS

Main principles of the STOS kernel

Monolithic kernel

Modular architecture
(probably) Multi-architecture
Simple.

SSSSS

Emphasis on simple

e No surprises
e When in doubt, mimic the linux kernel APIs.
e Still some differences with a classic unix kernel

SSSSS

mkdir(3)

int mkdir(const char* pathname, mode_t mode)

{
int fd = open(pathname, O_CREAT | O_DIRECTORY | O_EXCL, mode);
if (fd < Og
return fd;
close(fd);
) return O;

System

signals

no signals planned in stos
use something like signalfd(2)
have 4 file descriptors opened by default

still not implemented, we need to have:
o poll(2)
o threads in userland

SSSSS

mknod()

e devfs is populated by the kernel

e every instance of a driver are in separate directory:
o com devices (serial lines) lives in “/dev/com/[1-4]" for pc

SSSSS

STOS is now used for a kernel course!

SSSSS

What have been done this year

initramfs (Paul Hervot)
command line (Paul Hervot)
testing modules (Louis Feuvrier & Gabriel Laskar)

porting stos to other architectures
o arm (Jérémy Lefaure)
o galileo (GISTRE)

acpi (Gabriel Laskar)
e Vvirtio (Nahim El Atmani)

SSSSS

Testing the STOS kernel

e We now have a simple test module
e Some tests have been done (essentially for the course)

int register gtest(const char *name, void (*test)(struct gtest*), void *data,
void (*failure)(struct gtest*));

System

STOS on ARM

e Theoretically multi-architecture: PowerPC, Sparc64,
ARM, x86 and x86_64

e Only x86 is really maintained

e Learning about kernel programming and ARM
architecture

SSSSS

Kernel development on ARM

A lot of different versions

Different features

Each board has its own memory map
Linux uses device tree

SSSSS

BeagleBone Black

e Processor: AM3358
e ARM Cortex-A8

e 512MB SDRAM

e Cheap (~55%)

Build system

Quite complex

Used only for x86 target for a long time
ARM Toolchain

All modules in kernel mode

Bootloader (stage 3) and kernel in one file

SSSSS

Stage 3

u-boot => stage 3 => STOS core
standalone program

provides memory segments
load kernel core (ELF)

enable pagination

SSSSS

Current paging state

Physical Address Space

0x80400000
0x80000000

0x44f08000
0x44e08000

Virtual Address Space

0xC0400000

0xC0000000

0x80400000

0x80000000

e T e

0X44e08000@

System

Core

Most of arch independant code (klog,...)
Linker script

Serial console for klog

Backtrace

SSSSS

Interrupts

Reuse old ARM code

Fix code

Simple API to add or remove handlers
Should be different depending on SoC

SSSSS

Pagination (WIP)

Reuse the frame allocator

Like i386 pagination

Arch-dependant code to write (i.e invalidate page)
Snippets exist

SSSSS

TODO

e Jump to userland
e Drivers (GPIO, I2C,...)
e Other boards?

SSSSS

Intel Galileo

Securi
Systently

Goals

e PFE for GISTRE students

o Zackary Ayoun
o Matthieu Simon

e EFI support
e Support for the Quark x1000 SOC

e Consolidation of the STOS kernel

SSSSS

How to reboot an 0S?

triple fault

keyboard

strange ioport in some bios
apm

acpi

SSSSS

Multiple usage for ACPI in STOS

e Discover devices
o rewrite the device tree with it
o use it to discover PNP devices

e Sleep states
o reboot, duh!

SSSSS

What is still needed

kernel thread apis

better dependency handling
kernel and userland timing apis
rework device apis

rework smp support

poll()
mmap() with files

SSSSS

