
RCU
Theory and Practice

Marwan Burelle - LSE Summer Week 2015

Overview

➢ RCU concepts
Short overview of how RCU may solves your problems

➢ Wait for readers
Userland implementations for real

➢ Pseudo RCU
Implementing RCU concepts with non-RCU tools

… it’s all about procrastination …

Postponing operations can solve your
synchronization problem …

… time is very relative …

Changes append when you see them !

Read - Copy - Update

What for ?

➢ Concurrent shared data

➢ Kind of non-blocking

➢ Read intensive context

➢ Few updates

➢ Minimizing readers overhead

RCU is not only about when to free old
pointers ...

The keystone of read-copy update is the
ability to determine when all threads have
passed through a quiescent state since a

particular point in time.
READ-COPY UPDATE: USING EXECUTION HISTORY TO SOLVE CONCURRENCY PROBLEMS

PAUL E. MCKENNEY & JOHN D. SLINGWINE

Quiescent State:
when a thread no longer care about shared
and protected data structures.

Quiescent Period:
a time interval during which each thread
passes through at least one quiescent
state.

Quiescent Period

Thread 1

Thread 2

Thread 3

Thread 0

Quiescent State

Quiescent Period

Previous State Life-Time

RCU

RCU framework:

➢ Wait for readers (WFR)

➢ Respect of quiescent period

➢ Defines API/Constraints

➢ Underlying mechanism

RCU-based algo:

➢ wait-free readers

➢ Use WFR for sync

➢ Respect API/Constraints

➢ Copy-based updates

Wait For Readers

Key points: writer's operation terminates when all
readers have leaved the update region

➢ Writer offers a grace period
➢ Readers won’t continue longer than this period
➢ Quiescent Period will be our grace period

Simple Buffer Example

Writer:
➢ Copy data in new buffer
➢ Update new buffer
➢ Replace buffer pointer
➢ Wait for readers
➢ Free old buffer

Readers:
➢ Arrived before update:

● See old buffer
➢ Arrived after update

● See new buffer

Reader/Writer Lock Solution

Writer asks for lock

Writer obtains lock

Writer releases lock

Data
old

version

Data
new

version

Update

Readers allowed

Readers are blocked

Readers allowed

Simple Buffer Example

Quiescent State:

When reader leave buffer’s critical section

Quiescent Period:

All readers have leaved critical section

Simple Buffer Example

Readers on second buffer

time-line

First Buffer lifetime

Readers on first buffer

Second
buffer Active

First buffer
Deleted

Second Buffer lifetime

Writer
Active

Copy
Update

Writer:
// Sync with other writers
char *old = rcu_dereference(buf)
char *new = malloc(enough)
memcpy(new, old) // copy
update_content(new) // update
rcu_assign_pointer(buf, new)
synchronize_rcu()
free(old)

Simple Buffer Pseudo Code

Reader:
rcu_read_lock()
char *b = rcu_dereference(buf)
read_content(b) // read
rcu_read_unlock()

RCU Linked List

cur = list-entry-point;
while (cur != NULL) {
 // Your job here
 cur = cur->next;
}

Readers Traversing Loop

Constraints:
➢ Minimize traversing cost
➢ Wait-free (no lock, no spin)
➢ Independent iterations
➢ cur must be valid in body
➢ cur can be detached
➢ cur->next must be valid

Classical Solutions

➢ Coarse Grain lock: enough said …
➢ Fine Grain lock: not wait free (chain locking)
➢ Optimistic lock:
➢ Lazy lock
➢ Lock-Free wait free but with overhead

RCU List Delete Element

Wait for next quiescent period.

RCU Update List Element

Reader

writer

Wait for next quiescent period.
Reader

Writer strategy

Update:

➢ Copy the element and update the copy
➢ Replace access pointer when ready

Delete:

➢ Replace pointer

Both:

➢ Wait for readers before deleting old element

Waiting For Readers ?

I’m waiting, I got a lot of time ...

Non-preemptive Kernel

➢ Threads leave CPU only when complete

➢ Available CPU means one or more threads gone
through quiescent state

➢ All CPU available means end of quiescent period

And in Userland ?

➢ Previous strategy is irrealistic
➢ We need more stuff
➢ We still want:

● wait-free readers
● minimal overhead in readers
● keep the same structure

Common operations

➢ rcu_dereference: load/consume

➢ rcu_assign_pointer: store/release

➢ Compiler barrier
#define barrier() asm volatile("" : : : "memory")

➢ Memory barrier (full sequential consistency)

Common data

Per thread meta-info:

➢ TLS or like
➢ Threads need to register
➢ Readable from writer

Strategies ?

➢ Use GC/HP like mechanism

➢ Using RCU reader lock/unlock and barrier

➢ Update brain ?

Garbage Collecting

➢ Pretty easy when available

➢ Price ?

➢ Not sufficient for certain cases

➢ More suited ? Eventually Hazard Pointers

➢ Using Smart counters ?

See later ...

Using RCU reader lock/unlock

➢ Already explicit in the code

➢ May break requirement of minimal overhead

➢ Still interesting

➢ Wait-free (bounded spin, non blocking ops)

➢ Nested read sections

➢ RCU properties must hold ...

Issues

Principle

➢ Per reader counter set using memory barrier
● High order bit: phase (global)
● lower-order bits: nesting

➢ Writer does 2 grace period spin-waits
● spin on each reader with same phase and nesting ≠ 0
● 2 grace periods to avoid race condition

Discussion

➢ Only lock/unlock (read) and synchronize (write)
➢ Safe and easy to use in all cases

➢ Single writer (that’s RCU, don’t care ...)
➢ Memory barriers are expensive !

We can eliminate barrier cost using POSIX
thread signal !

Avoiding unneeded barriers

Goal: avoid barriers when no update is running

➢ Add a need barrier tag to meta-info
➢ Writer set the tag on readers and send a signal
➢ Signal handler reset the tag
➢ Signal enforces a real memory barrier

➢ Real gain (check urcu papers)

Can do better ?

Detecting Quiescent States

➢ Nothing in lock/unlock
➢ Explicit indication of quiescent states
➢ More intrusive but more efficient !

Marking Quiescent State

➢ Snapshot current period counter in reader
● wait free operation

➢ Writer wait while readers have current value
● blocking, but that’s RCU

➢ Possible overflow: solved with 64bits counter
● can be solved using double period also

➢ Provides also extended quiescent state
● thread online/offline API

Was it worth the effort ?

Some bench ...

Pseudo RCU

Most RCU-like algorithms can be
implemented using other pointers

reclamation mechanism.

Using smart pointers

➢ Pretty easy to set-up
➢ Use C++11’s std::shared_ptr
➢ Smart pointers are synchronized
➢ Hope ? std::atomic_is_lock_free ?

Using Hazard Pointers

➢ HP are wait free
➢ Just need a double check when getting pointer
➢ HP are another kind of relativistic programming

... once again, it’s all about procrastination

RCU-like shared buffer
Readers checking content
Occasional single writer update buffer

Lock-free shared_ptr is like ...

Readings

➢ RCU author’s page: http://www.rdrop.com/~paulmck/RCU/
Lot of links and useful articles

➢ User-Level Implementations of Read-Copy Update
Desnoyers, McKenney, Stern, Dagenais and Walpole
IEEE Transaction on Parallel and Distributed Systems, 23 (2): 375-382 (2012)

➢ Structured Deferral: Synchronization via Procrastination
Paul E. McKenney, ACM Queue 2013

➢ Introduction to RCU Concepts
Liberal application of procrastination for accommodation of the laws of physics – for more than two decades!
Paul E. McKenney, LinuxCon 2013

http://www.rdrop.com/~paulmck/RCU/
http://www.efficios.com/publications
http://www.efficios.com/publications
http://www.computer.org/portal/web/tpds/
http://www.computer.org/portal/web/tpds/
https://queue.acm.org/detail.cfm?id=2488549
https://queue.acm.org/detail.cfm?id=2488549
http://www.rdrop.com/~paulmck/RCU/RCU.LinuxCon.2013.10.22a.pdf
http://www.rdrop.com/~paulmck/RCU/RCU.LinuxCon.2013.10.22a.pdf

