RCU

Theory and Practice

Marwan Burelle - LSE Summer Week 2015

Overview

> RCU concepts

Short overview of how RCU may solves your problems

> Wait for readers

Userland implementations for real

> Pseudo RCU
Implementing RCU concepts with non-RCU tools

—

Security
System

Laboratory of Epita

Postponing operations can solve your
synchronization problem ...

Security
System

... time is very relative ...

Laboratory of Epita

Changes append when you see them !

Read - Copy - Update

YV V VY

What for ?

Concurrent shared data
Kind of non-blocking
Read intensive context
Few updates

Minimizing readers overhead

RCU is not only about when to free old
pointers ...

The keystone of read-copy update is the
ability to determine when all threads have
passed through a quiescent state since a
particular point in time.

READ-COPY UPDATE: USING EXECUTION HISTORY TO SOLVE CONCURRENCY PROBLEMS
PAUL E. MCKENNEY & JOHN D. SLINGWINE

Quiescent State:
when a thread no longer care about shared
and protected data structures.

Quiescent Period:
a time interval during which each thread
passes through at least one quiescent
state.

Quiescent Period

, Quiescent Period ,

[s
I

Y

1
Thread @ | y ;
1
: :
1 1
Thread 1 | ' :> :
1 1
: :
1 1
Thread 2 | : > :
1 1
: :
1
Thread 3 | : >
1
: .
1 1
Quiescent State | » Previous State Life-Time

System
I

Laboratory of Epita

RCU

RCU framework:

>

YV V V

Wait for readers (WFR)
Respect of quiescent period
Defines APl/Constraints

Underlying mechanism

RCU-based algo:

>

>
>
>

wait-free readers

Use WFR for sync
Respect APl/Constraints
Copy-based updates

Wait For Readers

Key points: writer's operation terminates when all
readers have leaved the update region

> Writer offers a grace period
> Readers won’t continue longer than this period
> Quiescent Period will be our grace period

Simple Buffer Example

Writer: Readers:

> Copy data in new buffer > Arrived before update:
> Update new buffer . See old buffer

> Replace buffer pointer > Arrived after update
> Wait for readers . See new buffer

> Free old buffer

Reader/Writer Lock Solution

[B

Data Readers allowed

old
version

Writer asks for lock

Readers are blocked
> < Writer obtains lock

Update

> < Writer releases lock

Data

new Readers allowed
version

\/ . _J A%

WASTE OF TIME.

i

LECk e metco |

Security
System

Laboratory of Epita

Simple Buffer Example

Quiescent State:
When reader leave buffer’s critical section
Quiescent Period:

All readers have leaved critical section

Simple Buffer Example

time-line >

First Buffer lifetime
Ufa?me Second Buffer lifetime
Readers on first buffer
\;\Vcrtl:z Readers on second buffer
Second First buffer

buffer Active Deleted

Simple Buffer Pseudo Code

Writer:

// Sync with other writers

char *old = rcu dereference(buf)
char *new = malloc(enough)
memcpy (new, old) // copy
update_content(new) // update
rcu_assign _pointer(buf, new)
synchronize rcu()

free(old)

Reader:

rcu_read lock()

char *b = rcu_dereference(buf)

read_content(b)
rcu_read_unlock()

// read

Laboratory of Epita

RCU Linked List

Readers Traversing Loop

Constraints:

Minimize traversing cost
Wait-free (no lock, no spin)
Independent iterations

cur must be valid in body
cur can be detached
cur->next must be valid

cur = list-entry-point;
while (cur != NULL) {
// Your job here
cur = cur->next;

¥

VYVVYVYVY

YYVYVYY

Classical Solutions

Coarse Grain lock: enough said ...
Fine Grain lock: not wait free (chain locking)
Optimistic lock:

tzzz-ll?:eke }wait free but with overhead

RCU List Delete Element

[Wait for next quiescent period. J

RCU Update List Element

[Wait for next quiescent period. J

Writer strategy

Update:

> Copy the element and update the copy
> Replace access pointer when ready

Delete:
> Replace pointer
Both:

> Wait for readers before deleting old element

Waiting For Readers ?

I'm waiting, | got a lot of time ...

Laboratory of Epita

Non-preemptive Kernel

> Threads leave CPU only when complete

> Available CPU means one or more threads gone
through quiescent state

> All CPU available means end of quiescent period

And in Userland ?

> Previous strategy is irrealistic
> We need more stuff

> We still want:

. wait-free readers
« minimal overhead in readers
. keep the same structure

Common operations

> rcu _dereference: load/consume
> pcu_assign pointer: store/release

> Compiler barrier

#define barrier() asm volatile(: : : "memory")

> Memory barrier (full sequential consistency)

Common data

Per thread meta-info:

> TLS or like
> Threads need to register
> Readable from writer

Strategies ?

> Use GC/HP like mechanism
> Using RCU reader lock/unlock and barrier
> Update brain ?

Y VY VY

Garbage Collecting

Pretty easy when available

Price ?

Not sufficient for certain cases

More suited ? Eventually Hazard Pointers
Using Smart counters ?

See later ...

Using RCU reader lock/unlock

> Already explicit in the code
> May break requirement of minimal overhead

> Still interesting

Issues

> Wait-free (bounded spin, non blocking ops)
> Nested read sections
> RCU properties must hold ...

Principle

> Per reader counter set using memory barrier
. High order bit: phase (global)
. lower-order bits: nesting

> Writer does 2 grace period spin-waits

. spin on each reader with same phase and nesting # 0
. 2 grace periods to avoid race condition

YV

vV

Discussion

Only lock/unlock (read) and synchronize (write)
Safe and easy to use in all cases

Single writer (that's RCU, don’t care ...)
Memory barriers are expensive !

We can eliminate barrier cost using POSIX
thread signal !

Security
System

Laboratory of Epita

Avoiding unneeded barriers

Goal: avoid barriers when no update is running

Add a need barrier tag to meta-info

Writer set the tag on readers and send a signal
Signal handler reset the tag

Signal enforces a real memory barrier

VYVY

> Real gain (check urcu papers)

Can do better ?

Detecting Quiescent States

> Nothing in lock/unlock
> Explicit indication of quiescent states
> More intrusive but more efficient !

Y VYV YV ¥

Marking Quiescent State

Snapshot current period counter in reader
. wait free operation

Writer wait while readers have current value
. blocking, but that's RCU

Possible overflow: solved with 64bits counter
. can be solved using double period also

Provides also extended quiescent state
. thread online/offline API

G SR
UHS

Was it worth fl)e effort ?

i T

System
I

Laboratory of Epita

Operations

Operations per seconds

2000000000 —8— 0) Basic list
—8— 1) Atomic list
—0— 2) Atomic Counters
—@— 3) shared _ptr list
1500000000
1000000000
500000000

0

1 5 10 50 100

Number of threads

Security
System

Some bench ...

Laboratory of Epita

Pseudo RCU

Most RCU-like algorithms can be
implemented using other pointers
reclamation mechanism.

YYVYY

Using smart pointers

Pretty easy to set-up

Use C++11's std: :shared ptr

Smart pointers are synchronized

Hope ? std::atomic is lock free ?

Using Hazard Pointers

> HP are wait free
> Just need a double check when getting pointer
> HP are another kind of relativistic programming

... once again, it's all about procrastination

LAZY DALEK IS INNO

PHOGHASTINATE!!

Operations per second

—— hazard_ptr
—— shared ptr

10,000,000

Operations

1,000,000

Number of threads

RCU-like shared buffer
Readers checking content
Occasional single writer update buffer

Laboratory of Epita

Lock-free shared_ptr is like ...

Security
System

Laboratory of Epita

| has agquestion...

Security
System

Laboratory of Epita

Readings

RCU author’s page: http://www.rdrop.com/~paulmck/RCU/

Lot of links and useful articles

User-Level Implementations of Read-Copy Update
Desnoyers, McKenney, Stern, Dagenais and Walpole
IEEE Transaction on Parallel and Distributed Systems, 23 (2): 375-382 (2012)

Structured Deferral: Synchronization via Procrastination
Paul E. McKenney, ACM Queue 2013

Introduction to RCU Concepts

Liberal application of procrastination for accommodation of the laws of physics — for more than two decades!

Paul E. McKenney, LinuxCon 2013

Laboratory of Epita

http://www.rdrop.com/~paulmck/RCU/
http://www.efficios.com/publications
http://www.efficios.com/publications
http://www.computer.org/portal/web/tpds/
http://www.computer.org/portal/web/tpds/
https://queue.acm.org/detail.cfm?id=2488549
https://queue.acm.org/detail.cfm?id=2488549
http://www.rdrop.com/~paulmck/RCU/RCU.LinuxCon.2013.10.22a.pdf
http://www.rdrop.com/~paulmck/RCU/RCU.LinuxCon.2013.10.22a.pdf

