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Overview

➢ RCU concepts
Short overview of how RCU may solves your problems

➢ Wait for readers
Userland implementations for real

➢ Pseudo RCU
Implementing RCU concepts with non-RCU tools



… it’s all about procrastination …



Postponing operations can solve your 
synchronization problem …



… time is very relative …



Changes append when you see them !



Read - Copy - Update



What for ?

➢ Concurrent shared data

➢ Kind of non-blocking

➢ Read intensive context

➢ Few updates

➢ Minimizing readers overhead



RCU is not only about when to free old 
pointers ...



The keystone of read-copy update is the 
ability to determine when all threads have 
passed through a quiescent state since a 

particular point in time. 
READ-COPY UPDATE: USING EXECUTION HISTORY TO SOLVE CONCURRENCY PROBLEMS

PAUL E. MCKENNEY & JOHN D. SLINGWINE



Quiescent State:
when a thread no longer care about shared 
and protected data structures.

Quiescent Period:
a time interval during which each thread 
passes through at least one quiescent 
state.
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RCU

RCU framework:

➢ Wait for readers (WFR)

➢ Respect of quiescent period

➢ Defines API/Constraints

➢ Underlying mechanism

RCU-based algo:

➢ wait-free readers

➢ Use WFR for sync

➢ Respect API/Constraints

➢ Copy-based updates



Wait For Readers

Key points: writer's operation terminates when all 
readers have leaved the update region

➢ Writer offers a grace period
➢ Readers won’t continue longer than this period
➢ Quiescent Period will be our grace period



Simple Buffer Example

Writer:
➢ Copy data in new buffer
➢ Update new buffer
➢ Replace buffer pointer
➢ Wait for readers
➢ Free old buffer

Readers:
➢ Arrived before update:

● See old buffer
➢ Arrived after update

● See new buffer



Reader/Writer Lock Solution
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Writer obtains lock

Writer releases lock
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Simple Buffer Example

Quiescent State:

When reader leave buffer’s critical section

Quiescent Period:

All readers have leaved critical section



Simple Buffer Example
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Writer:
// Sync with other writers
char *old = rcu_dereference(buf)
char *new = malloc( enough )
memcpy(new, old)        // copy
update_content(new)     // update
rcu_assign_pointer(buf, new)
synchronize_rcu()
free(old)

Simple Buffer Pseudo Code

Reader:
rcu_read_lock()
char *b = rcu_dereference(buf)
read_content(b)           // read
rcu_read_unlock()



RCU Linked List



cur = list-entry-point;
while (cur != NULL) {
  // Your job here
  cur = cur->next;
}

Readers Traversing Loop

Constraints:
➢ Minimize traversing cost
➢ Wait-free (no lock, no spin)
➢ Independent iterations
➢ cur must be valid in body
➢ cur can be detached
➢ cur->next must be valid



Classical Solutions

➢ Coarse Grain lock: enough said …
➢ Fine Grain lock: not wait free (chain locking)
➢ Optimistic lock: 
➢ Lazy lock
➢ Lock-Free wait free but with overhead



RCU List Delete Element

Wait for next quiescent period.



RCU Update List Element

Reader

writer

Wait for next quiescent period.
Reader



Writer strategy

Update:

➢ Copy the element and update the copy
➢ Replace access pointer when ready

Delete:

➢ Replace pointer

Both:

➢ Wait for readers before deleting old element



Waiting For Readers ?



I’m waiting, I got a lot of time ...



Non-preemptive Kernel

➢ Threads leave CPU only when complete

➢ Available CPU means one or more threads gone 
through quiescent state

➢ All CPU available means end of quiescent period



And in Userland ?

➢ Previous strategy is irrealistic
➢ We need more stuff
➢ We still want:

● wait-free readers
● minimal overhead in readers
● keep the same structure



Common operations

➢ rcu_dereference: load/consume

➢ rcu_assign_pointer: store/release

➢ Compiler barrier
#define barrier() asm volatile("" : : : "memory")

➢ Memory barrier (full sequential consistency)



Common data

Per thread meta-info:

➢ TLS or like
➢ Threads need to register
➢ Readable from writer



Strategies ?

➢ Use GC/HP like mechanism

➢ Using RCU reader lock/unlock and barrier

➢ Update brain ?



Garbage Collecting

➢ Pretty easy when available

➢ Price ?

➢ Not sufficient for certain cases

➢ More suited ? Eventually Hazard Pointers

➢ Using Smart counters ?

See later ...



Using RCU reader lock/unlock

➢ Already explicit in the code

➢ May break requirement of minimal overhead

➢ Still interesting



➢ Wait-free (bounded spin, non blocking ops)

➢ Nested read sections

➢ RCU properties must hold ...

Issues



Principle

➢ Per reader counter set using memory barrier
● High order bit: phase (global)
● lower-order bits: nesting

➢ Writer does 2 grace period spin-waits
● spin on each reader with same phase and nesting ≠ 0
● 2 grace periods to avoid race condition



Discussion

➢ Only lock/unlock (read) and synchronize (write)
➢ Safe and easy to use in all cases

➢ Single writer (that’s RCU, don’t care ... )
➢ Memory barriers are expensive !



We can eliminate barrier cost using POSIX 
thread signal !





Avoiding unneeded barriers

Goal: avoid barriers when no update is running

➢ Add a need barrier tag to meta-info
➢ Writer set the tag on readers and send a signal
➢ Signal handler reset the tag
➢ Signal enforces a real memory barrier

➢ Real gain (check urcu papers)



Can do better ?



Detecting Quiescent States

➢ Nothing in lock/unlock
➢ Explicit indication of quiescent states
➢ More intrusive but more efficient !



Marking Quiescent State

➢ Snapshot current period counter in reader
● wait free operation

➢ Writer wait while readers have current value
● blocking, but that’s RCU

➢ Possible overflow: solved with 64bits counter
● can be solved using double period also

➢ Provides also extended quiescent state
● thread online/offline API



Was it worth the effort ?



Some bench ...



Pseudo RCU



Most RCU-like algorithms can be 
implemented using other pointers 

reclamation mechanism.



Using smart pointers

➢ Pretty easy to set-up
➢ Use C++11’s std::shared_ptr
➢ Smart pointers are synchronized
➢ Hope ? std::atomic_is_lock_free ?



Using Hazard Pointers

➢ HP are wait free
➢ Just need a double check when getting pointer
➢ HP are another kind of relativistic programming

... once again, it’s all about procrastination





RCU-like shared buffer
Readers checking content
Occasional single writer update buffer



Lock-free shared_ptr is like ...







Readings

➢ RCU author’s page: http://www.rdrop.com/~paulmck/RCU/
Lot of links and useful articles

➢ User-Level Implementations of Read-Copy Update
Desnoyers, McKenney, Stern, Dagenais and Walpole
IEEE Transaction on Parallel and Distributed Systems, 23 (2): 375-382 (2012)

➢ Structured Deferral: Synchronization via Procrastination
Paul E. McKenney, ACM Queue 2013

➢ Introduction to RCU Concepts
Liberal application of procrastination for accommodation of the laws of physics – for more than two decades!
Paul E. McKenney, LinuxCon 2013

http://www.rdrop.com/~paulmck/RCU/
http://www.efficios.com/publications
http://www.efficios.com/publications
http://www.computer.org/portal/web/tpds/
http://www.computer.org/portal/web/tpds/
https://queue.acm.org/detail.cfm?id=2488549
https://queue.acm.org/detail.cfm?id=2488549
http://www.rdrop.com/~paulmck/RCU/RCU.LinuxCon.2013.10.22a.pdf
http://www.rdrop.com/~paulmck/RCU/RCU.LinuxCon.2013.10.22a.pdf

