
Static Analysis:
The Good, The Bad and The Ugly

Marwan Burelle
LSE Summer Week 2014

It’s all about theory, security, practice
...

and the rest.

Static Program Analysis ?

Testing the code without running it.

➢ Mostly undecidable or semi-decidable !

➢ Specific properties can be tested

➢ Often hard and complex

➢ Can’t be both sound and complete

But we need it !

➢ Detecting corner case errors
➢ Verifying complex properties
➢ Get a proven formal verification
➢ compiler/optimization related stuff

Toy Example

Sign Analysis

➢ Decide sign of an arithmetical expression
➢ Use 4-way logic:

● unknown
● plus
● minus
● both

unknown

plus minus

both

Sign Analysis
type expr =
 | Int of int
 | Var of string
 | UMinus of expr
 | Add of expr * expr
 | Dif of expr * expr
 | Mul of expr * expr

type sign = UNKNOWN | PLUS | MINUS | BOTH

module Env = Map.Make(String)

Sign Analysis

let rec sign env = function
 | Int i when i < 0 -> MINUS
 | Int i -> PLUS
 | Var x -> Env.find x env
 | UMinus e ->
 begin
 match sign env e with
 | PLUS -> MINUS
 | MINUS -> PLUS
 | _ -> BOTH
 end

Sign Analysis

 | Add (e0, e1) ->
 begin
 match (sign env e0, sign env e1) with
 | (PLUS, PLUS) -> PLUS
 | (MINUS, MINUS) -> MINUS
 | _ -> BOTH
 end

Sign Analysis

 | Dif (e0, e1) ->
 begin
 match (sign env e0, sign env e1) with
 | (PLUS, MINUS) -> PLUS
 | (MINUS, PLUS) -> MINUS
 | _ -> BOTH
 end

Sign Analysis

 | Mul (e0, e1) ->
 begin
 match (sign env e0, sign env e1) with
 | (PLUS, PLUS)
 | (MINUS, MINUS) -> PLUS
 | (PLUS, MINUS)
 | (MINUS, PLUS) -> MINUS
 | _ -> BOTH
 end

Sound or Complete ?

Analysis verifies a property

Sound Analysis:
identified cases really have the property

Complete Analysis:
all cases are identified

Sound Analysis provides safety

Complete Analysis tracks errors

Analysis

➢ Model Checking
➢ Data flow Analysis
➢ Constraint Based Analysis
➢ Abstract Interpretation
➢ Type Systems
➢ Handcrafted Analysis ;)
➢ ...

➢ Put label on code

➢ Build a flow graph

➢ Build equations and solve them

[x ← a + b]¹
[y ← a * b]²
while [y > a + b]³ do

[a ← a + 1]⁴
[x ← a + b]⁵

done

[x ← a + b]¹
[y ← a * b]²
while [y > a + b]³ do

[a ← a + 1]⁴
[x ← a + b]⁵

done

Kill Gen

1 ∅ {a+b}

2 ∅ {a*b}

3 ∅ {a+b}

4 {a+b, a*b, a+1} ∅

5 ∅ {a+b}

Entry Exit

1 ∅ {a+b}

2 {a+b} {a+b, a*b}

3 {a+b} {a+b}

4 {a+b} ∅

5 ∅ {a+b}

For real ?

Traditional code analysis requires:

➢ some language properties

➢ well founded semantics

➢ some execution model

C doesn’t fit this description !

C has the following drawbacks:

➢ no formal semantics

➢ the standard is sometimes fuzzy

➢ there’s still ambiguous syntactic aspects

Are we doomed ?

We can still have:

➢ unsound, incomplete but useful analysis

➢ guidelines for other methods

➢ working analysis on very specific cases

Buffer Overflow

void ugly(char *src) {
 char buf[8];
 strcpy(buf, src);
}

int main(int argc, char *argv[]) {
 if (argc > 1) {
 ugly(argv[1]);
 }
 return 0;
}

➢ Write outside of buffer boundaries

➢ Most common mistake

➢ Over the last 25 years:

● 14% of security vulnerabilities

● 23% of top severity vulnerabilities

➢ Known for years (1972, 1988 ...)

What can be done ?

➢ track usage of risky functions (strcpy ;)
➢ check size constraints on function calls
➢ when constraints doesn’t hold

→ raise a warning

➢ use code review/tests to confirm bug

Statically Detecting Likely Buffer Overflow Vulnerabilities
David Larochelle and David Evans (Usenix 2001)

➢ Using LCLint (now splint)

➢ Annotate libc headers

➢ Verify constraints on buffer read/write

http://lclint.cs.virginia.edu/usenix01.pdf
http://lclint.cs.virginia.edu/usenix01.pdf
http://www.splint.org/

void ugly(char *src) {
 char buf[8];
 strcpy(buf, src);
}

int main(int argc, char *argv[]) {
 if (argc > 1) {
 ugly(argv[1]);
 }
 return 0;
}

splint detects strcpy(buf, src)

Possible out-of-bounds store: strcpy(buf, src)
[...]
A memory write may write to an address beyond the allocated
buffer.

void mystrcpy(char *dst, char *src) {
 for (; *src != '\0'; src += 1, dst += 1)
 *dst = *src;
}

static
void ugly(char *src) {
 char buf[8];
 mystrcpy(buf, src);
}

int main(int argc, char *argv[]) {
 if (argc > 1) {
 ugly(argv[1]);
 }
 return 0;
}

Detected !

static void ugly2(char *src) {
 char *buf1 = malloc(8);
 char buf2[8];
 strncpy(buf1, src, 8);
 strcpy(buf2, buf1);
 free(buf1);
}

int main(int argc, char *argv[]) {
 if (argc > 1)
 ugly2(argv[1]);
 return 0;
}

Detected !

static void ugly2(char *src) {
 char *buf1 = malloc(8);
 char buf2[8];
 strncpy(buf1, src, 8);
 buf1[7] = '\0';
 strcpy(buf2, buf1);
 free(buf1);
}

int main(int argc, char *argv[]) {
 if (argc > 1)
 ugly2(argv[1]);
 return 0;
}

False Warning !

static void ugly2(char *src) {
 char *buf1 = malloc(8);
 char buf2[8];
 strncpy(buf1, src, 7);
 strcpy(buf2, buf1);
 free(buf1);
}

int main(int argc, char *argv[]) {
 if (argc > 1)
 ugly2(argv[1]);
 return 0;
}

No warning !

Clang Analyzer

clang static analyzer:

➢ analysis during semantic pass

➢ Reusable C++ library

➢ you can implement your own checker

➢ Complete C/C++/ObjC parser

➢ Full AST traversal

➢ Some checkers already available

➢ Still a little bit messy

➢ Out-of-the-box install doesn’t seem to detect
simple buffer overflow

Errors and Vulnerabilities

➢ Static analysis detects possible code errors

➢ Code errors may be triggered by attackers

➢ Code errors may be exploitable

➢ Eliminating errors is important

➢ Any error may finally become a vulnerability

➢ Static analysis can help a lot

➢ Probably better during dev cycle

➢ Specific analysis only identifies known flaws

➢ Too much spurious warning

➢ Quality is a matter of involvement
○ People don’t review their code, so why analyzing it

○ Beta testing will be done by users

○ As long as it works ...

