Linux File
Systems

Linux File Systems

Adrien ’schischi’ Schildknecht

July 18, 2014




Why FS matters

Linux File
Systems

@ Overhead: non-volatile memory is often the slowest
component

@ Reliability: no fault tolerated (data loss!)
@ People expect more and more features. . .

o Quotas

Snapshot

Versioning
Replication
Database features. ..




Linux File
Systems

Adrien

Section 1

Hardware




Linux File
Systems

Adrien
SC h P




KL E_Flash

sssss m

Linux File
Systems

@ no moving heads nor rotating platters
@& good random access
® low power

© wear out (writing)
o write in 2 phases

o Clear group of pages, 128Ko+ (slow)
o Write individual pages, 4Ko (fast)




Hardware Constraints

Linux File
Systems

HDD: SSD:
@ locality e TRIM
@ optimize seeking

Common:
@ Smallest unit is a block (reading/writing)
@ Least possible writing




Linux File
Systems

Section 2

Abstraction




sssss m

Linux File
Systems

File: store a named piece of data to later retrieve it.
@ stream of bytes, let the programmer read raw bytes
@ structural metadata: inode
@ descriptive metadata: attributes (name, owner, .. .)

Directory: provide a way to organize multiple files
@ hierarchies: directories can contain directories
@ data structure which contains names and handles




Linux File
Systems

FS: machinery to store/retrieve data

block: smallest unit writable by a disk or fs
metadata: info about a data, but not part of it
attribute: couple name/value

superblock: area where a fs stores its critical info
inode: place to store the metadata of a file
dentry: holds inode’s relation, allows fs traversal




Linux File
Systems

Data Blocks

Superblock Block Bitmap | |Inode Bitmap v g 'mode Table o
Lo rost_inode: 0 of1]2]3 01 (23] | inoded | Inode1 | Inode2 | Inode3 !
size: 1337 H
status: clean ‘{88 |F LELE) T ot d | modera mode:

g ol10]..] [e]a[10]..||tlecks:o | blocks:5 blocks7,8 :

0 1 2 3 4 5 6 7 8 :

"bin" - 1 i RAW RAW

"ete! -2 DATA DATA :

Figure: Relations between superblock, inodes, blocks, ...



K- E_ VFS:Why ?

Linux File
Systems

@ Keep track of available

filesystems [ Applications |
. . User land
@ Provide an uniform Kermai fand I -----------------------
interface | ] | s
. § Fa % s
@ Reasonable generic - [mentycache || [ mode cache |
processing for ‘ File systems

extd | btrfs | tux3 |my_fs|

common tasks
@ Common I/O cache
° Page CaChe | Page cache | | Buffer cache |

@ I-node cache

e Buffer cache
e Directory cache




K-E__ The VFS API

Linux File
Systems

@ Linux defines generic function and structure but doesn'’t
know anything about our fs

@ Linux uses composition to store the fs structs
@ Each struct contains a pointer to many member
functions

e —]

disk_inode —bl ny_inode |—. linux_inode
%

_____________ | -generc_ip
- inade_op

Read inods:

- read disk_inode from the media

- create a memory representation of it (my_inode)
4 -allec alinux_inods and make generic_ip point to
my_inode

- return the linux_node to let the vfs manage it




- E__ Page cache

Linux File
Systems

@ Keep disk-backed pages in RAM
@ Implemented with the paging memory managment
@ |t uses unused areas of memory.

42sh> free -m
total used free shared buffers cached

O UThWN =

Mem: 2947 2529 417 156 811 709
-/+ buffers/cache: 1007 1939
Swap: 1953 0 1953




K- E__ Page cache

Linux File
Systems

User Space

Application buffer
3

Reading:

copy_to_user( Kemel Land

@ read syscall

@ if in the cache, retrieve it; Kernel Buffer Page Cache

@ otherwise read it from the sh_bread(

Hardware

device and add it to the DA

Volatile Cache
CaChe Storage Device

Non-volatile storage




Page cache

Linux File
Systems

Writing
@ Copy buf to the page
cache
@ Mark the page as dirty

@ The kernel periodically
transfers all the dirty
pages to the device

-=writepage() (/)

Application buffer

User Space

copy_from_user(

4
Kernel Buffer

Kemel Land

Page Cache

r

Volatile Cache
Non-volatile storage

Hardware

Storage Device



Writing

Linux File
Systems

Why delay the write operations ?
@ Temporal locality
@ Seek optimization
@ Group operations
You can bypass the cache by using O_DIRECT.




Writing

Linux File
Systems

@ When free memory shrinks below a specified threshold
@ When dirty data grows older than a specific threshold
@ Tunable parameters in /proc/sys/vm/

@ You chan change the default I1/0 scheduler

@ If more than a thresold percent of a process’s adresse
space is dirty, processes must wait for the I/O
scheduler to flush the cache

cat /proc/sys/vm/dirty_expire_centisecs
3000

cat /proc/sys/vm/dirty_background_ratio
10

cat /proc/sys/vm/dirty_ratio

40

~NoO U~ WN =




Linux File
Systems

Affligem
Aubel
Augrenoise
Augrenette
Authentic
Autruche




Linux Radix Tree

Linux File

Systems Radix Tree: a compact prefix tree
Adrien

@ Wide and shallow
@ Each node contain 64 slots
@ Each level is a 6 bits prefix

0|1 . 62|63

o b , 7
6 bits Qoo & 7, M1y,
& C

[o]1].[e2]es] [o]1].]62]63] [0 ]1]]62]63] [0]1].[62]63]

6*H bits <




Linux Radix Tree

Linux File
Systems

Adrien

Additionnal feature: ability to associate tags with specific
entries (to mark a page as dirty or under writeback for
example) and retrieve them all easily.




I-node cache

Linux File
Systems

Inode cache:
@ Keep recently accessed file i-nodes
@ The kernel retrieve the inode from the fd table of the

application’s address space
@ Implemented as an open chain hash table, with blocks
linked into a LRU lists
e Used and dirty
e Used and clean
e Unused

read(fd, ...
Syscall Handler

fd table &

0

fd_o

1

fd_1

Retrieve inode address
associated with fl

hash inode

MULL

v

Inode cache

hash_0| hash_1

hash_n

] %



sssss m

Linux File
Systems

d-cache: speed up accesses to commonly used directories

@ Implemented as an open chained hash table, also
linked into a LRU list

@ Negative dentry for failed lookups

@ Prehash with name, rehash with the dentry parent’s
address




KL E Buffer cache

sssss m

Linux File
Systems

Block cache: interfaces with block devices, and caches
recently used meta-data disk blocks. One LRU cache
per-CPU.

@ The array is sorted, newest buffer is at bhs[0]
@ Discards the least recently used items first
@ Implemented as an array of size 8 (caching 8 pages)




Linux File
Systems

Section 3

Logging and Journaling




sssss m

Linux File
Systems

Adrien

Removing a file :
@ Remove its directory entry
@ Mark the inode as free
@ Mark data blocks as free

A crash between one of these steps leaves the fs in an
inconsistent state, and thus needs to be fully checked (fsck)




sssss m

Linux File
Systems

How to avoid partially written transactions ?

@ Transaction: complete set of modifications made to
the disk during one operation
@ Journal: Fixed-size contiguous area on the disk
(circular buffer)
@ Writing to disk:
e Add an entry to the journal

e Allow the write to happen on disk
e Mark the entry as completed

@ If an entry is not completed when mounting, replay it




K-E__ Journaling

Linux File
Systems
Adrien X
‘schisch | mkdir,create rename, ...
Modify
Add an entry | the page

Allow the kernel | Page Cache

to write the page

Effective write

Journal Data Blocks

Transaction completed



sssss m

Linux File
Systems

® consistency of metadata

& faster than fsck

o data consistency is not ensured
o redundancy of metadata writes




Logging

Linux File
Systems

@ The whole system data is structured in the form of a
circular log

@ Avoid writing data twice

@ Copy-On-Write, mark the old verion as free and write at
the end of the log

head

[:]Free space

file2 file3 file2

file1 W V2




sssss m

Linux File
Systems

Adri

® sequential writes
@ avoid redundant writes
© slow random reads




Linux File
Systems

Section 4

Real FS design




B-Tree

Linux File
Systems

116116
polees][saaliea

» «

‘ [l | 1 | ‘339|340

| ‘342|343| ‘681|682|

TE[11E TE[116
940 {941 279 {280

struct btree_val {
int key;
void *data;
} typedef btree_val;
//sizeof(btree_val)

8

struct btree {

} typedef btree;

o OhwWwN =

4096 > N+8+ (N+1) =4

N = 341

btree_val values[N];
btree *children[N+1];

//sizeof(btree)=8*N+(N+1)*4




B+Tree

Linux File
Systems

» «
173173 174174 174174 174174
‘” |1 | ‘339|340| ‘3‘”|3“2| ‘680|681| 910|911 249|250 251|252 590|591
1| struct bptree_leaf {
struct bptree { 2 stru§t {
. 3 int key;
int key[N]; S
. 4 void *value;
bptree *children[N+1];
5 bptree_leaf *nxt; //opt
} typedef bptree;
//sizeof(bptree)=4*N+(N+1)*4 6 } values[M];
7|} typedef btree_leaf;
8| //sizeof(btree)=12%N
9

4096 >4+ N+ (N+1)+4
N =511
4096 > 12+ M
M = 341




Linux File
Systems

logical file
positions

1]

1024
2048

3072

4095

Block-Based allocation

inode

name,

uid, gid, ..

1024-
2048-
3072-

VvVvVvy

-1023

2047
3071
5119

indirect
block

3072-4095
4096-5119
unused
unused

HFOOUJOoOUsWNEFED

=



K- E__ Extents

Linux File
Systems

@ A chunk of blocks instead of a single block
@ Still affected by fragmentation

struct ext3_extent {
—-le32 ee_block; /* first logical block extent covers */
—-lel6 ee_len; /* number of blocks covered by extent */
__lel6 ee_start_hi; /* high 16 bits of physical block */
__le32 ee_start; /* low 32 bits of physical block */




Linux File
Systems
Adri
‘schi Inode table
Extents
Journal

Delayed block allocation
Multi block allocator
Online defragmentation
Inline data

Htree (a variant of B+tree)

‘Group 0 Padding |ext4 Super Block ‘Group Descriptors ‘Reserved GDT Blocks,

1024 bytes |1 block ‘many blocks ‘many blocks

Data Block B\tmap|inode B\tmap|inode Table |Data Blocks

‘l block |1 block |many blocks! |many more blocks




Btrfs

Linux File
Systems

Adri

@ Basically same features as ext4 (extents, inlining, . ..)
@ Copy On Write metadata and data
@ Transparent compression




LKL E_ Btrfs Tree

sssss m

Linux File
Systems

A B+tree containing a generic key/value pair storage.
@ The same btree is used for all metadata

1 g E NN (T

3[4]s 7o o] DA 12]13[14




Linux File
Systems

Adrien

Section 5

Conclusion




L-E__ Conclusion

Linux File
Systems 1| #define MEGA(S) ((S) * 1024 * 1024)
2
3| int main(int argc, char *argv[]) {
4 char buf[4096];
5 int fd = open("/home/schischi/foo", O_CREAT | O_WRONLY, 0660);
6
7 if (argc == 2 && !strcmp(argv[1l], "-£f"))
8 if (fallocate(fd, ®, 0, MEGA(700)) != 0)
9 return 1;
10 for (int i = 0; i < MEGA(700) / sizeof (buf); ++i)
11 write(fd, buf, 4096);
12 write(fd, buf, MEGA(700) % sizeof (buf));
13
14 unlink("/home/schischi/foo0");
15 return 0;
16| ¥
17

$ repeat 100; ./a.out
./a.out ©0.01ls user 1.46s system 18% cpu 8.018 total

$ repeat 100; ./a.out -f
./a.out -f 0.00s user 1.01ls system 13% cpu 7.440 total

D OhWN =




Conclusion

Linux File
Systems

Adri

Questions ?
schischi@lse.epita.fr
schischi - irc.rezosup.org




References

Linux File
Systems

@ FS design
@ Book "Practical File System Design" by Dominic Giampaolo

@ VFS

@ http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git
@ http://lun.net/Kernel/Index/

@ Journaling, logging

@ http://pages.cs.wisc.edu/~remzi/OSTEP/file-1fs.pdf

@ http://research.cs.wisc.edu/wind/Publications/sba-usenix05.pdf
@ Ext4

@ https://extd.wiki.kernel.org/index.php/Ext4_Design

@ http://www.ibm.com/developerworks/library/1-anatomy-ext4/
@ Birfs

@ http://video.linux.com/videos/chris-mason-btrfs-file-system

@ http://atrey.karlin.mff.cuni.cz/~jack/papers/1k2009-ext4-btrfs.pdf



http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git
http://lwn.net/Kernel/Index/
http://pages.cs.wisc.edu/~remzi/OSTEP/file-lfs.pdf
http://research.cs.wisc.edu/wind/Publications/sba-usenix05.pdf
https://ext4.wiki.kernel.org/index.php/Ext4_Design
http://www.ibm.com/developerworks/library/l-anatomy-ext4/
http://video.linux.com/videos/chris-mason-btrfs-file-system
http://atrey.karlin.mff.cuni.cz/~jack/papers/lk2009-ext4-btrfs.pdf

