Advanced Python Features Gone Bad

Clément Rouault — Franck Michea
hakril@lse.epita.fr — kushou®@lse.epita.fr

LSE, EPITA Systems Lab.
http://lse.epita.fr/


http://lse.epita.fr/

Introduction

Who's there?

@ Clément Rouault @ Franck Michea
@ hakril@lse.epita.fr @ kushou@lse.epita.fr
@ twitter: hakril @ twitter: kushou_

@ Both GISTRE and LSE 2014.
@ Interested in Python and Security.
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Introduction

What this talk is about.

@ How to write horrible code with style.

@ Using advanced features the wrong way to understand how
they work.

@ We won't directly talk about inner workings of the interpreter
a lot, but some of the points are closely related to it.

@ Note: Even though these technics could be used to obfuscate
code, we didn't write this talk with it in head. We were
mostly just playing with the language!
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Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Simple function call

1 def f(a, b, c):

2 return (a, b, c)

3

4 £, 2, 3) # (1, 2, 3)
5

6 f(c=3, a=1, b=2) # (1, 2, 3)
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Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

defaults arguments

o func_defaults

1 def f(a, b=0, c=42):

2 return (a, b, c)

3

4 f£(11) # (11, 0, 42)
5

6 f.func_defaults # (0, 42)
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Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Reference Hell

1 def f(a, c=[1):

2 c.append(a)

3 return (a, c)

4

5 print f.func_defaults # ([1,)

6

7 print f(42) # (42, [421)

8

9 print f.func_defaults # ([42],)

10

11 print £("Test.") # (’Test.’, [42, ’Test.’])
12

13 print f.func_defaults # ([42, ’Test.’],)
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Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Writable attribute

Let the magic append!
def f(a, b = "STR"):
return (str(a) + " : " + str(b))
£0O # TypeError: f() takes at least 1 argument (0 given)

£(1) # "1 : STR"

f.func_defaults = ("NOP",)
£(42) # "1 : NOP"

© 0 N O Os W N =
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Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Why stop here?

1 def f(a, b = "STR"):

2 return (str(a) + " : " + str(b))

3

4 £(1) # 1 : STR

5

6 f.func_defaults = ()

7 £(1) # TypeError: f() takes at least 2 argument (1 given)
8

9 f.func_defaults = ("NOP", 42)

w0 £0 # "NOP : 42"
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Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

pause closure

1 def plusn(n):

2 def plus(x):

3 return x + n

4 return plus

5

6 plus_1 = plusn(l)

7 print plus_1.func_closure

8 # (<cell at 0x7fd50074c788: int object at 0za34c68>,)
9 print plus_1.func_closure[0].cell_contents

10 #1
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Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Base of late binding

1 v =54

2 gen = (v for _ in range(1000))
3

4 print next(gen) # 54

5

6 v = "POP"

7 print next(gen) # "POP"
8

9 print next(gen) # "POP"
10

11 v = "RET"

12 print next(gen) # "RET"
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Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Warning!

v = "Test."

gen = (v for _ in range(1000))

def mprint(g, v):
print next(g)

N o A W

mprint (gen, "FAKE") # "Test."
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Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Tricks on late binding!

1
2
3
4
5
6
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11 = [[x + y for x in ’AB’] for y in ’12’]
112 = [(x + y for x in ’AB’) for y in ’12’]

for 1, 12 in zip(1l, 112):
for t, t2 in zip(1l, 12):
print t, ’vs.’, t2



Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Solution

1 11 = [[x + y for x in ’AB’] for y in ’12’]
2 112 = [(x + y for x in ’AB’) for y in ’12’]
3

4 for 1, 12 in zip(1l, 112):

5 for t, t2 in zip(1l, 12):

6 print t, ’vs.’, t2

7

8 # Al wvws. A2

9 # Bl vs. B2

10 # A2 vs. A2
11 # B2 vs. B2
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Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

New type at runtime

1 class A(object):

2 pass

3

4 class B(object):

5 def f(self):

6 print "Call on f for {0}".format(self)

7

8 a=A0

9o a.f() # AttributeError: ’A’ object has no attribute ’f’
10

11 a.__class__ =B

12 a.f() # Call on f for <__matin__.B object at O0z7ffb659c4690>
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Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

New type for type!

class Meta(type):
pass

1

2

3

4 class OtherMeta(type):

5 def __call__(self):

6 print "META CALL"
7 return 42

8

9

class A(object):
10 __metaclass__ = Meta

12 print A()

13 # <__main__.A object at 0z7fe477a92690>
15 A.__class__ = OtherMeta

16 print A()

17 # META CALL

18 # 42
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Data model: Operator Overloading
Decorators: Turing completenes:

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation Introduction

1 static long

2 int_hash(PyIntObject *v)

3 {

4 /* XXX If this is changed, you also need to change the way
5 Python’s long, float and complex types are hashed. */

6 long x = v -> ob_ival;

7 if (x == -1)

8 X = -2;

9 return x;

10}

1 if hash(-2) == hash(-1):
2 print(’:)’)
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Control-Flow Manipulation What?

Easiest way to write unreadable code...

@ Doesn't only apply to dynamic languages; can be done with
languages where operator overloading is possible.

@ Biggest limitation is probably what allows the syntax of your
language and the number of operators you can override.

@ You obviously need to give out the code of your VM, though
you then can encode your whole code.
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. . Deco o
Control-Flow Manipulation . Y ess 2 .. What?

What we used

@ You will mostly be restrained by the syntax and the number of
operators you will be able to overload.

@ Operator overloading is done in python using special
functions:

o Arithmetics are done with __add__ and __sub__

e You can play with [] by overloading __getitem__

e dot can be with properties, and comma by translating tuples.
e _mneg__and __pos__ were useful too.

e You can return objects from comparisons.

@ You can't write exactly what you want. Syntax + what
applies on what.
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Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation . :
P Inheritence Tree: Turing completeness 2 . .

Code example

1 class B:

2 def __init__(self, *args):

3 self._actions = []

4 for other in args:

5 self._actions.extend(other._actions)
6 self._actions.append(input_op)
7 if self._actions:

8 self._actions.pop()

9

10 def __neg__(self):

11 self._actions.insert (0, decd_op)
12 return self

13

14 def __pos__(self):

15 self._actions.insert(0, incd_op)
16 return self
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Data model: Operator Overloading
ors: Turing completen

Control-Flow Manipulation rce Tree: Tu omple

Code example

def __getitem__(self, item):
if isinstance(item, tuple):
c = B(xitem)
else:
@

B(item)
self._actions.append(while_op(list(c._actions)))
return self

N O Uk W N
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Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

Example with brainfuck

b.execute()
# prints "Hello World!"

1 b = B(++++++++++B() [BO>+++++++B () >++++++++++B()>+++B()>+B() \
2 <BO)<B()<B()<-B()]1+-BO)>++B() ._+-B()>+B() . _+—+++++++ \

3 B()._+-B()._+-++B() . _+-BO>+B()._+-BO<BO< \

4 +++++++++++++++B() . _+-B()>B() . _+-+++B() . _+——————- BO. \

5 i B(O)._+-BO>+BO)._+-BO>B(0)._+-B0)

6

7
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Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation . .
P Inheritence Tree: Turing completeness 2 . .

decorators

1 @decorator

2 def myfunc(x):

3 return x

4

5 myfunc = decorator (myfunc)
6

7 # decorator : f -> f
8

9 def decorator(f):

10 def wrap(x):

11 print "HELLO"
12 return f(x)
13 return wrap
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Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation . .
P Inheritence Tree: Turing completeness 2 . .

more decorators

1 Q@log_into("/tmp/file")

2 def myfunc(x):

3 return x * 2

4

5 myfunc = log_into("/tmp/file") (myfunc)
6

7 #loginto : log_into() return a decorator
8

9 def log_into(path):

10 def decorator(f):

11 def function(x):

12 print (path)

13 return f(x) * 2

14 return function

15 return decorator
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Data model: Operator Overloading
Decorators: Turing completeness!
Inheritence Tree: Turing completeness 2 . .

Control-Flow Manipulation

class Decorator(object):
def __init__(self, args):
self.args = args

1

2

3

4

5 def __call__(self, f):
6 self.f = £

7 return self.func

8

9 def func(self, *args, **kargs):
10 print self.args

11 return self.f(xargs, **kargs)

13 @Decorator ("MSG")
14 def myf(x):

15 return x
16 print myf (42)
17 # "MSG"

18 # 42
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Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

MORE decorators!

Generating a decorator class using MetaClass

class DecInstr(type):
current_state = None

1
2
3
4 def __new__(cls, name, bases, attrs):
5 if ’__next__’ not in attrs:

6 f = lambda self, simple_next, state: simple_next
7 attrs[’__next__’] = f

8

9

if ’__do__’ not in attrs:

attrs[’__do__’] = lambda *args: None
10 attrs[’__call__’] = cls.sub_call
11 return type.__new__(cls, name, bases, attrs)
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Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

MORE META decorators!

1 def sub_call(self, next_func):

2 if not hasattr(next_func, "dad"):

3 type(self.__class__).current_state = state()
4 cstate = type(self.__class__).current_state

5 do = self.__do__

6 self.__do__ = lambda args: do(args, cstate)

7 ne = self.__next__

8 self.__next__ = lambda next_func: ne(next_func, cstate)
9 def n(*args):

10 res = self.__do__(args)

11 if res:

12 args = res

13 return self.__next__(next_func) (*args)

14 n.dad = self

15 type(self.__class__).current_state.flow.append(n)
16 return n
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Data model: Operator Overloading
Decorators: Turing completeness!
Inheritence Tree: Turing completeness 2 . .

Control-Flow Manipulation

decorython

1 __metaclass__ = DecInstr

2 class Loop(object):

3 def __init__(self, rep):

4 self.rep, self.maxrep = rep, rep

6 def __next__(self, simple_next, state):
7 self.rep = 1

8 if self.rep == O:

9 self.rep = self.maxrep
10 return simple_next

11 return state.flow[-1]

12

13 class DPrint(object):

14 def __init__(self, msg):

15 self .msg = msg

16

17 def __do__(self, args, state):
18 print self .msg
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Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

decorython

def blink(state):
blink.x = not blink.x
return blink.x
blink.x = True

def onif (*args):
return (args[0] + "T",) + args[i:]

© 0 N Ok W N

@DPrint (’POP’)

10 @Dif(blink, onif)
11 @Loop(2)

12 @Duper ()

13 def myfunc(string):

14 print string

15 return string

16

17 myfunc("re" # POP \n POP \n RET
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Data model: Operator Overloading
Decorators: Turing completeness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

©® super(klass, instance).func(*args, *kwargs)
@ klass represents the class from which we want to jump
@ instance is the object on which is applied func.

@ Syntactic sugar available to skip these parameters in a class
declaration.

class B:
def foo(self):
print(’Yay!’)

class A(B):

def foo(self):
super () .foo() # B.foo(self)
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Data model: Opera
. . Decorators: Turi ompl S
Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ...What?

Why use super()?

@ Helps support cooperative multiple inheritance in a dynamic
execution environment.

@ It'll make sure that everything is visited in the right order (the
same order as getattr)
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Data model: Operator Overloadir
Decorators: Turing compl

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

Simple inheritance
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Data model: Operator Overloading
ators: Turing eteness!

. . D
Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

Super on simple inheritance
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Data model: Operator Overloading
Decorators: Turing completeness!
Inheritence Tree: Turing completeness 2

Control-Flow Manipulation

1 class D: pass #D E

2 class E: pass # \/

3 class B(D, E): pass # B

4

5 class F: pass #F G

6 class G: pass # \/

7 class C(F, G): pass # C

8

9 class A(B, C): pass

10

11 # mro: (<class ’__main__.A’>, <class ’__main__.B’>,
12 # <class ’__main__.D’>, <class ’__main__.E’>,
13 # <class ’__main__.C’>, <class ’__main__.F’>,
14 # <class ’__main__.G’>, <class ’object’>)

15 print(’mro:’, A.__mro__)
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Data model: Opera
Decorators: Turi ompl

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ...What?

Common mistake with super()

@ Sometimes you need to provide the parameters though, for
example if you want a more complicated behavior, or are not

in a class definition.

1 super(obj.__class__, obj).foo()
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Control-Flow Manipulation

What you can actually do

©® super(klass, instance).func(*args, *kwargs)

o If you control the klass argument, you can jump whereever
you want in the inheritance tree.
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Data mode
mpl

ipulati B g co ess!
Control-Flow Manipulation Inhe Tree: Turing completeness 2 ... What?

Some important info on inheritance

@ You can have an instance of a class object in your inheritance
tree only once.

e Not a problem, since we can create a class and return it in a
function.
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Data model: Operator Overl
Decorators: Turing complete

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

Some important info on inheritance

@ You can have an instance of a class object in your inheritance
tree only once.

e Not a problem, since we can create a class and return it in a
function.

@ Tail recursions are not optimized in python (choice of the
BDFL) so you are limited to 1000 embedded calls. (Reached
easily with loops)

e Hardens the way to implement loops, but not that hard, and
it's still possible to detect it while constructing the inheritance
tree.
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model: Operator Overlo
tors: Turing complet

. . D
Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

VM implementation in the inheritance tree

@ We will implement a VM with opcodes as classes and use the
inheritance tree as a memory.

@ All simple opcodes will just call the next instruction with
super.

@ Any opcode that wants to do complicated jumps can do it by
calling super () themselves.

@ Note: they can also add multiple classes in the inheritance
tree, to use as "addresses” .
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Data model: Operator Overloadir
Decorators: Turing compl
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

Fuck me right!? [1/3]

> G G G G ) @ @) G
f"“_
:
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Data model
ators: Turing compl
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

right!? [2/3]
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Data model: Operator Overloadir
Decorators: Turing compl
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

Fuck me right!? [3/3]
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Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

Program declaration

1 class Program(*str2inheritancetree(prog), metaclass=ProgramMeta) :
2 def init_proc(self):

3 class Proc:

4 def __init__(self):

5 self.dp, self.mem = 0, [0]

6

7 def __str__(self):

8 msg = [’DP = {}’.format(self.dp),

9 ’MEM = {}’.format(self.mem)]
10 return ’; ’.join(msg)

11 return Proc()

12

Clément Rouault, Franck Michea Advanced Python Features Gone Bad



Data model: Operator Overloading
D ators: Turing eteness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

+++ [+—-]+

COACIRCD)
¢
Gr) Q) Q) (e ()
— \——=
Program

e DP = 0; MEM = [0]
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Data model: Operator Overloading
D ators: Turing eteness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

+++ [+—-]+
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Control-Flow Manipulation
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Control-Flow Manipulation
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Conclusion

Conclusion

@ Thank you for your attention!

@ We have more ideas, and you might have some too, so come
talk to us!

@ Ask if you want a demo or PoCs :)

@ Christian Raoul @ Quontin Choux
@ hakril@lse.epita.fr @ kushou@lse.epita.fr
@ twitter: @hakril @ twitter: @kushou_
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