Advanced Python Features Gone Bad

Clément Rouault — Franck Michea
hakril@lse.epita.fr — kushou®@lse.epita.fr

LSE, EPITA Systems Lab.
http://lse.epita.fr/

http://lse.epita.fr/

Introduction

Who's there?

@ Clément Rouault @ Franck Michea
@ hakril@lse.epita.fr @ kushou@lse.epita.fr
@ twitter: hakril @ twitter: kushou_

@ Both GISTRE and LSE 2014.
@ Interested in Python and Security.

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Introduction

What this talk is about.

@ How to write horrible code with style.

@ Using advanced features the wrong way to understand how
they work.

@ We won't directly talk about inner workings of the interpreter
a lot, but some of the points are closely related to it.

@ Note: Even though these technics could be used to obfuscate
code, we didn't write this talk with it in head. We were
mostly just playing with the language!

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Introduction

Table of Contents

© Introduction

© Data Manipulation
@ Code objects and function types
@ Late binding and fun with closures
@ Object types manipulation

© Control-Flow Manipulation
@ Data model: Operator Overloading
@ Decorators: Turing completeness!
@ Inheritence Tree: Turing completeness 2 ... What?

@ Conclusion

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Simple function call

1 def f(a, b, c):

2 return (a, b, c)

3

4 £, 2, 3) # (1, 2, 3)
5

6 f(c=3, a=1, b=2) # (1, 2, 3)

Clément Rouault, Franck Michea Advanced Pyt Features Gone Bad

Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

defaults arguments

o func_defaults

1 def f(a, b=0, c=42):

2 return (a, b, c)

3

4 f£(11) # (11, 0, 42)
5

6 f.func_defaults # (0, 42)

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Reference Hell

1 def f(a, c=[1):

2 c.append(a)

3 return (a, c)

4

5 print f.func_defaults # ([1,)

6

7 print f(42) # (42, [421)

8

9 print f.func_defaults # ([42],)

10

11 print £("Test.") # (’Test.’, [42, ’Test.’])
12

13 print f.func_defaults # ([42, ’Test.’],)

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Writable attribute

Let the magic append!
def f(a, b = "STR"):
return (str(a) + " : " + str(b))
£0O # TypeError: f() takes at least 1 argument (0 given)

£(1) # "1 : STR"

f.func_defaults = ("NOP",)
£(42) # "1 : NOP"

© 0 N O Os W N =

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Why stop here?

1 def f(a, b = "STR"):

2 return (str(a) + " : " + str(b))

3

4 £(1) # 1 : STR

5

6 f.func_defaults = ()

7 £(1) # TypeError: f() takes at least 2 argument (1 given)
8

9 f.func_defaults = ("NOP", 42)

w0 £0 # "NOP : 42"

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

pause closure

1 def plusn(n):

2 def plus(x):

3 return x + n

4 return plus

5

6 plus_1 = plusn(l)

7 print plus_1.func_closure

8 # (<cell at 0x7fd50074c788: int object at 0za34c68>,)
9 print plus_1.func_closure[0].cell_contents

10 #1

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Base of late binding

1 v =54

2 gen = (v for _ in range(1000))
3

4 print next(gen) # 54

5

6 v = "POP"

7 print next(gen) # "POP"
8

9 print next(gen) # "POP"
10

11 v = "RET"

12 print next(gen) # "RET"

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Warning!

v = "Test."

gen = (v for _ in range(1000))

def mprint(g, v):
print next(g)

N o A W

mprint (gen, "FAKE") # "Test."

Clément Rouault, Franck Michea Advanced Pyt Features Gone Bad

Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Tricks on late binding!

1
2
3
4
5
6

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

11 = [[x + y for x in ’AB’] for y in ’12’]
112 = [(x + y for x in ’AB’) for y in ’12’]

for 1, 12 in zip(1l, 112):
for t, t2 in zip(1l, 12):
print t, ’vs.’, t2

Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

Solution

1 11 = [[x + y for x in ’AB’] for y in ’12’]
2 112 = [(x + y for x in ’AB’) for y in ’12’]
3

4 for 1, 12 in zip(1l, 112):

5 for t, t2 in zip(1l, 12):

6 print t, ’vs.’, t2

7

8 # Al wvws. A2

9 # Bl vs. B2

10 # A2 vs. A2
11 # B2 vs. B2

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

New type at runtime

1 class A(object):

2 pass

3

4 class B(object):

5 def f(self):

6 print "Call on f for {0}".format(self)

7

8 a=A0

9o a.f() # AttributeError: ’A’ object has no attribute ’f’
10

11 a.__class__ =B

12 a.f() # Call on f for <__matin__.B object at O0z7ffb659c4690>

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Code objects and function types
Late binding and fun with closures
Object types manipulation

Data Manipulation

New type for type!

class Meta(type):
pass

1

2

3

4 class OtherMeta(type):

5 def __call__(self):

6 print "META CALL"
7 return 42

8

9

class A(object):
10 __metaclass__ = Meta

12 print A()

13 # <__main__.A object at 0z7fe477a92690>
15 A.__class__ = OtherMeta

16 print A()

17 # META CALL

18 # 42

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data model: Operator Overloading
Decorators: Turing completenes:

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation Introduction

1 static long

2 int_hash(PyIntObject *v)

3 {

4 /* XXX If this is changed, you also need to change the way
5 Python’s long, float and complex types are hashed. */

6 long x = v -> ob_ival;

7 if (x == -1)

8 X = -2;

9 return x;

10}

1 if hash(-2) == hash(-1):
2 print(’:)’)

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Control-Flow Manipulation What?

Easiest way to write unreadable code...

@ Doesn't only apply to dynamic languages; can be done with
languages where operator overloading is possible.

@ Biggest limitation is probably what allows the syntax of your
language and the number of operators you can override.

@ You obviously need to give out the code of your VM, though
you then can encode your whole code.

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

. . Deco o
Control-Flow Manipulation . Y ess 2 .. What?

What we used

@ You will mostly be restrained by the syntax and the number of
operators you will be able to overload.

@ Operator overloading is done in python using special
functions:

o Arithmetics are done with __add__ and __sub__

e You can play with [] by overloading __getitem__

e dot can be with properties, and comma by translating tuples.
e _mneg__and __pos__ were useful too.

e You can return objects from comparisons.

@ You can't write exactly what you want. Syntax + what
applies on what.

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation . :
P Inheritence Tree: Turing completeness 2 . .

Code example

1 class B:

2 def __init__(self, *args):

3 self._actions = []

4 for other in args:

5 self._actions.extend(other._actions)
6 self._actions.append(input_op)
7 if self._actions:

8 self._actions.pop()

9

10 def __neg__(self):

11 self._actions.insert (0, decd_op)
12 return self

13

14 def __pos__(self):

15 self._actions.insert(0, incd_op)
16 return self

Clément Rouault, Franck Michea Advanced Pyt Features Gone Bad

Data model: Operator Overloading
ors: Turing completen

Control-Flow Manipulation rce Tree: Tu omple

Code example

def __getitem__(self, item):
if isinstance(item, tuple):
c = B(xitem)
else:
@

B(item)
self._actions.append(while_op(list(c._actions)))
return self

N O Uk W N

Clément Rouault, Franck Michea Advanced Pyt Features Gone Bad

Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

Example with brainfuck

b.execute()
prints "Hello World!"

1 b = B(++++++++++B() [BO>+++++++B () >++++++++++B()>+++B()>+B() \
2 <BO)<B()<B()<-B()]1+-BO)>++B() ._+-B()>+B() . _+—+++++++ \

3 B()._+-B()._+-++B() . _+-BO>+B()._+-BO<BO< \

4 +++++++++++++++B() . _+-B()>B() . _+-+++B() . _+——————- BO. \

5 i B(O)._+-BO>+BO)._+-BO>B(0)._+-B0)

6

7

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation . .
P Inheritence Tree: Turing completeness 2 . .

decorators

1 @decorator

2 def myfunc(x):

3 return x

4

5 myfunc = decorator (myfunc)
6

7 # decorator : f -> f
8

9 def decorator(f):

10 def wrap(x):

11 print "HELLO"
12 return f(x)
13 return wrap

Clément Rouault, Franck Michea Advanced Pyt Features Gone Bad

Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation . .
P Inheritence Tree: Turing completeness 2 . .

more decorators

1 Q@log_into("/tmp/file")

2 def myfunc(x):

3 return x * 2

4

5 myfunc = log_into("/tmp/file") (myfunc)
6

7 #loginto : log_into() return a decorator
8

9 def log_into(path):

10 def decorator(f):

11 def function(x):

12 print (path)

13 return f(x) * 2

14 return function

15 return decorator

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data model: Operator Overloading
Decorators: Turing completeness!
Inheritence Tree: Turing completeness 2 . .

Control-Flow Manipulation

class Decorator(object):
def __init__(self, args):
self.args = args

1

2

3

4

5 def __call__(self, f):
6 self.f = £

7 return self.func

8

9 def func(self, *args, **kargs):
10 print self.args

11 return self.f(xargs, **kargs)

13 @Decorator ("MSG")
14 def myf(x):

15 return x
16 print myf (42)
17 # "MSG"

18 # 42

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

MORE decorators!

Generating a decorator class using MetaClass

class DecInstr(type):
current_state = None

1
2
3
4 def __new__(cls, name, bases, attrs):
5 if ’__next__’ not in attrs:

6 f = lambda self, simple_next, state: simple_next
7 attrs[’__next__’] = f

8

9

if ’__do__’ not in attrs:

attrs[’__do__’] = lambda *args: None
10 attrs[’__call__’] = cls.sub_call
11 return type.__new__(cls, name, bases, attrs)

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

MORE META decorators!

1 def sub_call(self, next_func):

2 if not hasattr(next_func, "dad"):

3 type(self.__class__).current_state = state()
4 cstate = type(self.__class__).current_state

5 do = self.__do__

6 self.__do__ = lambda args: do(args, cstate)

7 ne = self.__next__

8 self.__next__ = lambda next_func: ne(next_func, cstate)
9 def n(*args):

10 res = self.__do__(args)

11 if res:

12 args = res

13 return self.__next__(next_func) (*args)

14 n.dad = self

15 type(self.__class__).current_state.flow.append(n)
16 return n

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data model: Operator Overloading
Decorators: Turing completeness!
Inheritence Tree: Turing completeness 2 . .

Control-Flow Manipulation

decorython

1 __metaclass__ = DecInstr

2 class Loop(object):

3 def __init__(self, rep):

4 self.rep, self.maxrep = rep, rep

6 def __next__(self, simple_next, state):
7 self.rep = 1

8 if self.rep == O:

9 self.rep = self.maxrep
10 return simple_next

11 return state.flow[-1]

12

13 class DPrint(object):

14 def __init__(self, msg):

15 self .msg = msg

16

17 def __do__(self, args, state):
18 print self .msg

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

decorython

def blink(state):
blink.x = not blink.x
return blink.x
blink.x = True

def onif (*args):
return (args[0] + "T",) + args[i:]

© 0 N Ok W N

@DPrint (’POP’)

10 @Dif(blink, onif)
11 @Loop(2)

12 @Duper ()

13 def myfunc(string):

14 print string

15 return string

16

17 myfunc("re" # POP \n POP \n RET

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data model: Operator Overloading
Decorators: Turing completeness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

©® super(klass, instance).func(*args, *kwargs)
@ klass represents the class from which we want to jump
@ instance is the object on which is applied func.

@ Syntactic sugar available to skip these parameters in a class
declaration.

class B:
def foo(self):
print(’Yay!’)

class A(B):

def foo(self):
super () .foo() # B.foo(self)

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data model: Opera
. . Decorators: Turi ompl S
Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ...What?

Why use super()?

@ Helps support cooperative multiple inheritance in a dynamic
execution environment.

@ It'll make sure that everything is visited in the right order (the
same order as getattr)

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data model: Operator Overloadir
Decorators: Turing compl

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

Simple inheritance

Clément Rouault, Franck Michea

Data model: Operator Overloading
ators: Turing eteness!

. . D
Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

Super on simple inheritance

Clément Rouault, Franck Michea Advanced Pyt

Data model: Operator Overloading
Decorators: Turing completeness!
Inheritence Tree: Turing completeness 2

Control-Flow Manipulation

1 class D: pass #D E

2 class E: pass # \/

3 class B(D, E): pass # B

4

5 class F: pass #F G

6 class G: pass # \/

7 class C(F, G): pass # C

8

9 class A(B, C): pass

10

11 # mro: (<class ’__main__.A’>, <class ’__main__.B’>,
12 # <class ’__main__.D’>, <class ’__main__.E’>,
13 # <class ’__main__.C’>, <class ’__main__.F’>,
14 # <class ’__main__.G’>, <class ’object’>)

15 print(’mro:’, A.__mro__)

Clément Rouault, Franck Michea Advanced Pyt Features Gone Bad

Data model: Opera
Decorators: Turi ompl

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ...What?

Common mistake with super()

@ Sometimes you need to provide the parameters though, for
example if you want a more complicated behavior, or are not

in a class definition.

1 super(obj.__class__, obj).foo()

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Control-Flow Manipulation

What you can actually do

©® super(klass, instance).func(*args, *kwargs)

o If you control the klass argument, you can jump whereever
you want in the inheritance tree.

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data mode
mpl

ipulati B g co ess!
Control-Flow Manipulation Inhe Tree: Turing completeness 2 ... What?

Some important info on inheritance

@ You can have an instance of a class object in your inheritance
tree only once.

e Not a problem, since we can create a class and return it in a
function.

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data model: Operator Overl
Decorators: Turing complete

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

Some important info on inheritance

@ You can have an instance of a class object in your inheritance
tree only once.

e Not a problem, since we can create a class and return it in a
function.

@ Tail recursions are not optimized in python (choice of the
BDFL) so you are limited to 1000 embedded calls. (Reached
easily with loops)

e Hardens the way to implement loops, but not that hard, and
it's still possible to detect it while constructing the inheritance
tree.

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

model: Operator Overlo
tors: Turing complet

. . D
Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

VM implementation in the inheritance tree

@ We will implement a VM with opcodes as classes and use the
inheritance tree as a memory.

@ All simple opcodes will just call the next instruction with
super.

@ Any opcode that wants to do complicated jumps can do it by
calling super () themselves.

@ Note: they can also add multiple classes in the inheritance
tree, to use as "addresses” .

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data model: Operator Overloadir
Decorators: Turing compl
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

Fuck me right!? [1/3]

> G G G G) @ @) G
f"“_
:

Clément Rouault, Franck Michea Advanced Py Bad

Data model
ators: Turing compl
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

right!? [2/3]

Clément Rouault, Franck Michea

Data model: Operator Overloadir
Decorators: Turing compl
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

Fuck me right!? [3/3]

Clément Rouault, Franck Michea

Data model: Operator Overloading
Decorators: Turing completeness!

Control-Flow Manipulation Inheritence Tree: Turing completeness 2 ... What?

Program declaration

1 class Program(*str2inheritancetree(prog), metaclass=ProgramMeta) :
2 def init_proc(self):

3 class Proc:

4 def __init__(self):

5 self.dp, self.mem = 0, [0]

6

7 def __str__(self):

8 msg = [’DP = {}’.format(self.dp),

9 ’MEM = {}’.format(self.mem)]
10 return ’; ’.join(msg)

11 return Proc()

12

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

Data model: Operator Overloading
D ators: Turing eteness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

+++ [+—-]+

COACIRCD)
¢
Gr) Q) Q) (e ()
— \——=
Program

e DP = 0; MEM = [0]

Clément Rouault, Franck Michea

Data model: Operator Overloading
D ators: Turing eteness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

+++ [+—-]+

Clément Rouault, Franck Michea Advanced Pyt

Data model: Operator Overloading
D ators: Turing eteness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

+++ [+—-]+

Clément Rouault, Franck Michea Advanced Pyt

Data model: Operator Overloading
D ators: Turing eteness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

+++ [+—-]+

Clément Rouault, Franck Michea Advanced Pyt

Data model: Operator Overloading
D ators: Turing eteness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

+++ [+—-]+

Clément Rouault, Franck Michea Advanced Pyt

Data model: Operator Overloading
D ators: Turing eteness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

+++ [+—-]+

Clément Rouault, Franck Michea Advanced Pyt

Data model: Operator Overloading
D ators: Turing eteness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

+++ [+—-]+

Clément Rouault, Franck Michea Advanced Pyt

Data model: Operator Overloading
D ators: Turing eteness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

+++ [+—-]+

Clément Rouault, Franck Michea Advanced Pyt

Data model: Operator Overloading
D ators: Turing eteness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

+++ [+—-]+

Clément Rouault, Franck Michea Advanced Pyt

Data model: Operator Overloading
D ators: Turing eteness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

+++ [+—-]+

Clément Rouault, Franck Michea Advanced Pyt

Data model: Operator Overloading
D ators: Turing eteness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

+++ [+—-]+

Clément Rouault, Franck Michea Advanced Pyt

Data model: Operator Overloading
D ators: Turing eteness!
Inheritence Tree: Turing completeness 2 ... What?

Control-Flow Manipulation

+++ [+—-]+

Clément Rouault, Franck Michea Advanced Pyt

Conclusion

Conclusion

@ Thank you for your attention!

@ We have more ideas, and you might have some too, so come
talk to us!

@ Ask if you want a demo or PoCs :)

@ Christian Raoul @ Quontin Choux
@ hakril@lse.epita.fr @ kushou@lse.epita.fr
@ twitter: @hakril @ twitter: @kushou_

Clément Rouault, Franck Michea Advanced Python Features Gone Bad

	Introduction
	Data Manipulation
	Code objects and function types
	Late binding and fun with closures
	Object types manipulation

	Control-Flow Manipulation
	Data model: Operator Overloading
	Decorators: Turing completeness!
	Inheritence Tree: Turing completeness 2 …What?

	Conclusion

