mikro - Multiprocessor Init in Kernel

Julien Freche

julien.freche @lse.epita.fr
http://lse.epita.fr/

mikro -
Multiprocessor Init
in Kernel

Introduction
Interruptions

CPU init

Percpu variables

Conclusion

http://lse.epita.fr/

Outline I

@ Introduction

© Interruptions
e Old PIC
e JOAPIC
e LAPIC
e IPI

© CPU init
@ BootStrap Processor
@ Application Processor
o INIT-SIPI-SIPI

@ Percpu variables
@ Usage
@ Implementation
@ Using clang

@ Conclusion

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

CPU init
Percpu variables

Conclusion

Introduction

Introduction

mikro -
Multip: ssor Init
in Kernel

Introduction
Interruptions

CPU init

Percpu variables

Conclusion

Too many questions

I will talk about x86 system with multiple processors.
@ How to handle interruptions ?
@ How to boot all CPUs ?
@ What is the state of the system at boot ?
@ How to detect the number of CPU(s) ?

Dealing with multiple processors requires to deal with
interruptions. Let’s see why.

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

CPU init

Conclusion

Interruptions

Interruptions

mikro -
Multiy ssor Init
in Kernel

Introduction

Interruptions

0ld PIC
I0APIC
LAPIC
IPI

CPU init
Percpu variables

Conclusion

I interrupt you

Interruption

Signal sent to a processor to report an event that requires
immediate attention.

Interrupts can be caused by:
@ Hardware: event caused by some device

@ Software: system call from userland, debugging purposes, ..

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

0ld PIC
I0APIC
LAPIC
IPI

CPU init
Percpu variables

Conclusion

Old PIC

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptic

0Old PIC
I0APIC

LAPIC

01d PIC

CPU init

Vintage chip

ro -
Multiprocessor Init
in Kernel

Introduction

Interruptions
It controls the CPU’s interrupt mechanism, by accepting several | JUic

I0APIC

interrupt requests and feeding them to the processor in order. Lapic

IPI

e —
Limitations: init

@ Only 8 pin per PIC (16 IRQ on x86 with two PICs).
@ No SMP support, can only send interrupts to one CPU.

Percpu variables

Conclusion

@ Programmed with 1O ports
The PIC is no replaced by the IOAPIC on modern systems.

IOAPIC

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptic

0ld PIC
T0APIC
LAPIC

IOAPIC

CPU init

Incoming chip

ro -
Multiprocessor Init
in Kernel

Introduction

It collects interrupts from all devices and provide a way to send | REERIES

0ld PIC

it to a CPU or a group of CPU. osric
Features: PU it
e 24 pln per IOAPIC Percpu variables
Memory mapped deVice Conclusion

°
@ You can have multiple IOAPICs

@ Special bus to send interruptions: ICC bus
°

Handle global interruptions (not specific to a CPU)

LAPIC

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptic

0ld PIC
I0APIC

LAPIC

LAPIC

CPU init

That chip is mine

mikro -
Multiprocessor Init
in Kernel

Local APIC
It collects local interrupts and provide a way to a CPU to accept | RHESEEH
lnterrupts. Interruptions

0ld PIC

I0APIC

Features: LGE

IPI

@ 2 pin per local APIC CPU init

Percpu variables

@ Memory mapped device

Each CPU has a local APIC

Timer, Performance monitoring, Thermal sensor
Use ICC bus to speak with IOAPIC(s)

Handle local interruptions

Conclusion

Each Lapic has an unique ID

All together

mikro -
Multiprocessor Init
[1 r————— - - in Kernel
B 1 i L it
| | | ‘ | |
CPU1 | cPU2 I CPU3 |
| [Introduction
| NMI INTR | ‘ NMI INTR ‘ ‘ NMI INTR |
| | ‘ | ‘ | Interrupti
| | ‘ | | | 0ld PIC
‘ | | I0APIC
| LocAL I LOCAL LOCAL AT
B I A TR
| LINTINO LINTIN{ | ‘ LINTINO LINTIN1 ‘ ‘ LINTINO LINTINA | L
e O oL O oL d] CPU init
2 LINTINT — - *'717] 7"‘1'7 77"4&7_
‘LINTIND N B N - Percpu variables
< o o o >
N v g _
- RESET O 0 0 - Conclusion
< N v U >
_/CC BUS . . . o
O e T OO 00

INTR

8259A-
EQUIVALENT
PICS

INTERRUPT INPUTS

o
APIC o s o

IPI

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

0ld PIC
I0APIC
LAPIC
1P

IPI CPU init
Percpu variables

Conclusion

Poke

mikro -
Multiprocessor Init
in Kernel

InterProcessor Interrupts

IPIs are interrupts issued by one processor and sent to another. Tntroduction
Interruptions
Old PIC
o Issued by the Local Apic
LAPIC
@ Destination o
o All including self CPU init
o All excluding self Percpu variables
o Self Conclusion

@ One processor
@ Delivery Mode

o Low priority
NMI
INIT, STARTUP

CPU init

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

CPU init

BootStrap Processor

Application Processor
CPU init

Percpu variables

(Gla)DOS: I am still alive

For backward compatibility all modern PCs starts in the
following state:

@ Only one CPU active
@ Real mode (16 bits)
@ PIC available to handle interruptions

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

CPU init

BootStrap Prc

Percpu variables

Conclusion

BootStrap Processor

BootStrap Processor

mikro -
Multiprocessor Init
in Kernel

Introduction
Interruptions

CPU init

Processor

INIT-SIPI-SIPI

Percpu variables

Cor

Dibs on the kernel

ro -
Multiprocessor Init
in Kernel

Bootstrap Processor

This processor is chosen by the BIOS to start executing the
bootloader code. It is the first to execute the kernel code and LGRS

must wake up the other processors if needed. RO
CPU init

Duties on mikro:
@ Create a GDT and an IDT
@ Init the paging

Percpu variables

@ Move the kernel code to its final location
Parse MP Tables and/or MADT table
Init IOAPIC(s) and its own LAPIC
Perform some per-cpu init

Wake every processors

Start scheduling tasks

Vintage table

Multiprocessor Init
in Kernel

MultiProcessor Table

Created by Intel in 1997. Provides MP related informations to
the OS.

Introduction

Interruptions

i CPU ini
Informations: init

@ Processors list
o Buses list Percpu variables
o IOAPICs list Conclusion
o Interrupts list

Limitations:
@ gemu: list only processors, not core nor threads.
@ On some real hardware: list only cores, not threads.

@ On other hardwares: not present

Colona’s favorite toy

ro -
Multiprocessor Init
in Kernel

Introduction

MADT: Multiple APIC Description Table

Interruptions

Part of the ACPI spec. Provides informations about an SMP T
system.
InformatiOHSZ Percpu variables

@ Processors, cores, threads
@ IOAPICs, x2APIC list
o Interrupt Source Override
Kind of the easy part of the ACPI (no AML).

Application Processor

Application Processor

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

CPU init
BootStrap Processor
Application Processor
INIT-SIPI-SIPI

Percpu variables

Cor

Dibs on the kernel

ssor Init
in Kernel

Application Processor

Introduction

Processor in the halt state, waiting for a special IPI to start
executing code. This processor is in real mode.

Interruptions

CPU init

Duties on mikro: TS

Jump to protected mode Percpu variables
. Conclusion

Create its own GDT :

Load the existing IDT

Init its LAPIC

°
°
@ Perform some per-cpu init
°
o Start scheduling tasks

INIT-SIPI-SIPI

INIT-SIPI-SIPI

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

CPU init

Wake up!

A processor will start executing code when receiving this
sequence of IPIs.

@ Copy some code in low memory
@ Send an INIT IPI

@ Send a StartUP IPI

o Send another StartUP IPI

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

CPU init

Conclusion

Some magic

mikro -
Multiprocessor Init
in Kernel

I found this code on the internet.

Anit: Introduction
» 8¢ L NMI h an d 1 er Interruptions
mov dword [4%2], .boot
XOr eax, eax CLPU i"i;”
mov ebx, (11b shl 18) + (0 shl 15) + (1 shl 14) .
+ (0 shl 11) + (100b shl 8) + 2

Percpu variables

;trigger interrupts in every processor Conclusion

mov [dword OXxFEE00300 + 16], eax
mov [dword OXxFEE00300 + 00], ebx

ret

align 16
.boot:

It works on gemu and some systems.

Let me explain it

Steps:
@ Register boot function as handler into the IDT
@ Set eax to zero

@ Set IPI parameters into ebx:

o NMI
o Physical, Assert level, Edge trigger mode
o All excluding self

@ Send the IPI using the LAPIC

Kind of the quickest hack to wake every processors !

ro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

CPU init

What is wrong?

Issues:
@ Do not follow the spec..

@ Assume that LAPIC is at Oxfee00000 (default addr but can
be changed)

@ Wake every processor (even processor disabled by the
BIOS)

Kind of the quickest hack to wake every processors !

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

CPU init

BootStrap P

Percpu variables

Percpu variables

mikro -
Multip: ssor Init
in Kernel

Introduction

Interruptions

CPU init

Percpu variables
Usage
Implementation

Using clang

Usage

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

CPU init

Percpu varia

Usage
Implementation

Using clang

My precious variable

Per-cpu variable

A cpu local variable. Each cpu can has a different value stored in
this variable.

Considerations:
o Kind of TLS (Thread Local Storage) but for processors
@ Accessed using macro on Linux

@ Useful to change behavior of the code depending on the
CPU

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

CPU init

Percpu variables
Us:

Conclusion

Implementation

Implementation

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

CPU init

P u
Usag
Implementation

Using clang

Cor

mikro

How to implement it ?
o Create a special section in binary file for these variables

@ Allocate needed space by every processor for these
variables

@ Set a special entry in every GDT (at the same offset for
every processor) but with a different values.

@ Set FS to this special entry in the GDT

@ Access variables relatively to FS

mikro -
Multiprocessor Init
in Kernel

Introduction

Interruptions

CPU init

Percpu variables

Using clang

Using clang

mikro -

Multiprocessor

in Kernel

Introduction

Interruptions

CPU init
Percpu varia
Usay
Implementation

Using clang

Concl

nit

clang: 1, gcc: 0

Multiprocessor Init
in Kernel

With clang you can do the following:

Introduction
define FS_RELATIVE address_space (257)
define PCPU_S section(".cpuvar")

define __percpu __attribute__ ((FS_RELATIVE, PCPU_S))
int __percpu myvar;

Interruptions

CPU init

Percpu variables

void do_something ()
{
myvar = 42;

}

After per-cpu init, you can access your variable normally
without macros. Pretty clean.

Conclusion

Conclusion

mikro -
Multiy ssor Init
in Kernel

Introduction
Interruptions

CPU init

Percpu variables

Conclusion

Almost done

To finish:
@ To support SMP in kernel, think about it early
@ Very interesting subject closely related to interruptions
@ Think about a clever algorithm to dispatch interrupts

o All SMP systems has IOAPIC and LAPIC, try to play with
it !

ro -
Multiprocessor Init
in Kernel

Introduction
Interruptions

CPU init

Percpu variables

Conclusion

Contacts

Julien Freche
@ julien.freche @lse.epita.fr

@ @JulienFreche

mikro -
Multiprocessor Init
in Kernel

Introduction
Interruptions

CPU init

Percpu

Conclusion

mailto:julien.freche@lse.epita.fr

The end

Thank you for your attention

ro -
Multiprocessor Init
in Kernel

Introduction
Interruptions

CPU init

Percpu variables

Conclusion

	Introduction
	Interruptions
	Old PIC
	IOAPIC
	LAPIC
	IPI

	CPU init
	BootStrap Processor
	Application Processor
	INIT-SIPI-SIPI

	Percpu variables
	Usage
	Implementation
	Using clang

	Conclusion

