
mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation

Conclusion

mikro - Efficient Inter Process
Communication

Julien Freche & Victor Apercé

julien.freche@lse.epita.fr
viaxxx@lse.epita.fr

http://lse.epita.fr/

http://lse.epita.fr/


mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation

Conclusion

Outline I

1 Introduction

2 Inter Process Communication

3 Implementation
Linux
Mach
L4
seL4

4 mikro - Implementation
Existing enhancements
mikro innovation

5 Conclusion



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation

Conclusion

Introduction

Introduction



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation

Conclusion

Communication is the key

Most of the processes want to interact with each others.

Several ways to do it

Very important in a micro-kernel



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation

Conclusion

Inter Process Communication

Inter Process Communication



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation

Conclusion

Choose your weapon

There is several ways to interact with other processes:

File

Signal

Socket

Message queue

Pipe

Shared memory

...



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation

Conclusion

Communication is the key

IPC purposes:

Information sharing

Modularity

Convenience

Privilege Separation



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation

Conclusion

monolithic

Kernel

VFS

Process

syscall iret

1 The process performs a
syscall

2 The kernel handles the
request

3 Execution of the process
can continue



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation

Conclusion

micro kernel

Kernel

Process VFS

syscall

iret

1 The process performs a
syscall: send to the service

2 The kernel handles the
request and send the
message to the service

3 The service handles the
request and performs a
syscall: reply

4 The kernel transfer the
answer to the process

5 Execution of the process
can continue



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation
Linux

Mach

L4

seL4

mikro -
Implementation

Conclusion

Implementation

Implementation



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation
Linux

Mach

L4

seL4

mikro -
Implementation

Conclusion

Take my message, now !

There is two kind of message passing:

Synchronous

Asynchronous

Synchronous IPC are often considered faster:

No copy from user to kernel required



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation
Linux

Mach

L4

seL4

mikro -
Implementation

Conclusion

Linux

Linux



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation
Linux

Mach

L4

seL4

mikro -
Implementation

Conclusion

Queue that message

There is two IPC implementations on Linux

System V IPC

POSIX IPC

Each implementation contains:

Message queues

Semaphores

Shared Memory

We will discuss about messages queues.



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation
Linux

Mach

L4

seL4

mikro -
Implementation

Conclusion

System V Message queues

Older than POSIX IPCs

Implemented using queues

Use RCU: Read-Copy-Update

Similar to a pipe but you have to send messages, not bytes

Each message has a type, so you can filter messages

Very portable



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation
Linux

Mach

L4

seL4

mikro -
Implementation

Conclusion

POSIX Message queues

Implemented as a special file system

Each queue is a special file, you have to open it by its name

Each message has a priority

Message oriented



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation
Linux

Mach

L4

seL4

mikro -
Implementation

Conclusion

Mach

Mach



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation
Linux

Mach

L4

seL4

mikro -
Implementation

Conclusion

Many ports

Port oriented

Message transfer is asynchronous

Similar to BSD sockets

Rights are associated with ports

Message oriented (header+body+trailer)

Slow implementation ?



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation
Linux

Mach

L4

seL4

mikro -
Implementation

Conclusion

L4

L4



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation
Linux

Mach

L4

seL4

mikro -
Implementation

Conclusion

Depends on the size

There is two types of synchronous IPC:
Fast IPC

Very fast, use only CPU registers
During the syscall registers are preserved and execution is
transfered to the receiver
Can transfer only a limited amount of data

Long IPC: two types
Using shared memory
Copy data from an address space to another



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation
Linux

Mach

L4

seL4

mikro -
Implementation

Conclusion

seL4

seL4



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation
Linux

Mach

L4

seL4

mikro -
Implementation

Conclusion

Depends on the size

Endpoint oriented

endpoint = small kernel object with a list of threads

n receiver(s), n sender(s)

Threads do not send a message to another thread but to an
endpoint

Make synchronous transfer when possible



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

mikro - Implementation

mikro - Implementation



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

Existing enhancements

Existing enhancements



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

Too slow

IPC in micro kernel are too slow

Reducing the IPC time is hard

mikro current implementation is too simple

It will be changed soon to the new design introduced in
these slides



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

Spotting the issue

What is reducing IPC speed?
1 Context switch is slow:

by itself
because it invalidates TLB

2 Copying message is slow
3 Algorithms in send/receive system calls can be too slow
4 Having a lot of intermediates between the sender and the

final receiver



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

Make context switch faster

Context switch time is quiet impossible to reduce

For x86 processor: sysenter/sysexit (Intel) or syscall/sysret
(AMD) are faster than standard interrupt handling

This is the only thing that can be done



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

No copy/paste

Copying message can be avoided by 2 means:

Shared pages
Sharing pages between the sender and receiver avoids any copy.

Cannot be used for all IPC because it will starve memory

Synchronisation between process is more complex

Should be used only for large messages

Synchronous IPC
Synchronous IPC avoids to copy the message in kernel and then
to its final destination.



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

Algorithms rule computers

Our point of view is that’s what can be improved

That’s quiet logical it’s the only thing that is really under
our control



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

mikro innovation

mikro innovation



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

O(log(n))

IPC in L4 family (excluding seL4) have a log(n) cost,
where n is the number of processes

IPC are sent to a particular process, so finding the task
struct of this process is log(n)

mikro will do this in O(1)!



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

O(log(n))

IPC in L4 family (excluding seL4) have a log(n) cost,
where n is the number of processes

IPC are sent to a particular process, so finding the task
struct of this process is log(n)

mikro will do this in O(1)!



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

Channel Handle

mikro IPC will have a connection support, named channel

Every connection is represented by a channel handle,
named chandle

A chandle is just like a file descriptor, an integer

There’s a limited number of chandles by process

Chandle associated structures are stored in a fixed-size
array in every process task structure



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

Then why O(1)?

Opening the connection costs O(log(n)) to find the receiver

Chandle associated structure contains a pointer to this
receiver

Finding a chandle is looking in a fixed-size array

Then send cost is O(1)



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

A little drawing

Process

A

Process

B

Channel "toto"
Create

Open

O(log(m))

O(log(m))

m channels created

Process

A

Process

B

Chandle

Chandle

Channel "toto"
Send

O(1)



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

Ok I lied a bit

This is perfectly working for 1 to 1 connections

But when the connection is client-server oriented (1 to N),
this does not work

Because we cannot suppose the fixed number of possible
connection is enough for the server

But we have a solution too!



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

Server Solution

In 1 to N:

Creating the channel is almost the same as before
But opening the channel is different:

No other chandle is created for the server
Client gets its chandle as usual
Server keeps track of these connections in its chandle
associated structure



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

Sending in O(1) to a server

A client can then still send in O(1)

When the server receives, a special chandle is created,
named message handle or mhandle

This mhandle is a temporary chandle that points to the
sending client in order to reply

The server must then reply to the client using this mhandle
or close it



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

A little drawing

Server

Client

Chandle

Chandle

Channel "toto"

Send

O(1)

Server

Client

Chandle

Chandle

Channel "toto"
Reply

O(1)

Mhandle



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

This isn’t perfect

That way, client send in O(1) and server reply in O(1)

But when a server want to send to a client directly:
It costs O(log(n)) where n is the connection number to the
server

This isn’t perfect but we think that kind of behaviour is not
that much used



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation
Existing enhancements

mikro innovation

Conclusion

Yet an other optimisation

mikro will also keep a small data for each client connected
to a server channel

When a client sends a message to the server, this data is
provided to the server

That way server can store a pointer in that data to get faster
its own data associated to this client

It avoids the server to do an extra log(n) to find the data
associated with the client PID



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation

Conclusion

Conclusion

Conclusion



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation

Conclusion

This looks good on paper

As said before, we haven’t yet tested all this

We’ll do benchmarks when it’ll be implemented to check
that model

So let’s see you in winter to check if this idea was the good
one



mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation

Conclusion

Contacts

Julien Freche

julien.freche@lse.epita.fr

@JulienFreche

Victor Apercé

viaxxx@lse.epita.fr

Feel free to contact us. We will be happy to answer.

mailto:julien.freche@lse.epita.fr
mailto:viaxxx@lse.epita.fr


mikro - Efficient
Inter Process

Communication

Julien Freche &
Victor Apercé

Introduction

Inter Process
Communication

Implementation

mikro -
Implementation

Conclusion

The end

Thank you for your attention


	Introduction
	Inter Process Communication
	Implementation
	Linux
	Mach
	L4
	seL4

	mikro - Implementation
	Existing enhancements
	mikro innovation

	Conclusion

