
Theoretical Corner: The Non-Interference
Property

Marwan Burelle

marwan.burelle@lse.epita.fr
http://wiki-prog.infoprepa.epita.fr

http://wiki-prog.infoprepa.epita.fr


Outline

1 Introduction

2 Theory And Security
Models And Policies
Non-Interference

3 Flow Analysis

4 Application To Parallelism



Introduction



Non-Interference ?

What the Hell is that ?



Non-Interference ?

It’s a formal property about the link between input and output
channels of an information system.



Non-Interference ?

• Used to verify security model in information system
• Used to analyse information flow in programs
• Used to verify that a parallel system is determinist



Non-Interference ?

• Used to verify security model in information system
• Used to analyse information flow in programs
• Used to verify that a parallel system is determinist



Non-Interference ?

• Used to verify security model in information system
• Used to analyse information flow in programs
• Used to verify that a parallel system is determinist



Theory And Security



Formal Security ?

• We need to define what we want:
• We need to define how to enforce it:
• We need to verify that it works:



Formal Security ?

• We need to define what we want: Security Policy
• We need to define how to enforce it:
• We need to verify that it works:



Formal Security ?

• We need to define what we want: Security Policy
• We need to define how to enforce it: MAC, ACL, . . .
• We need to verify that it works:



Formal Security ?

• We need to define what we want: Security Policy
• We need to define how to enforce it: MAC, ACL, . . .
• We need to verify that it works: Oh ! . . . shit . . .



Models And Policies



Security Policy ?

• Military: like Bell-LaPadula model
• Commercial: like Chinese Wall model



Bell & LaPadula

• Latice of security labels
• Subjects (users or programs) have an upper bound security

level called security clearance.
• Objects have a level that can only be raised
• Subject s can make a read access to object o, if and only if:

clearance(o) ≤ clearance(s)
No read-up !

• s can make a write access to o, if and only if:
clearance(s) ≤ clearance(o)
No write-down !



Bell & LaPadula

• Latice of security labels
• Subjects (users or programs) have an upper bound security

level called security clearance.
• Objects have a level that can only be raised
• Subject s can make a read access to object o, if and only if:

clearance(o) ≤ clearance(s)
No read-up !

• s can make a write access to o, if and only if:
clearance(s) ≤ clearance(o)
No write-down !



Bell & LaPadula

• Latice of security labels
• Subjects (users or programs) have an upper bound security

level called security clearance.
• Objects have a level that can only be raised
• Subject s can make a read access to object o, if and only if:

clearance(o) ≤ clearance(s)
No read-up !

• s can make a write access to o, if and only if:
clearance(s) ≤ clearance(o)
No write-down !



Chinese Wall Security

• Dynamic policy based on access history
• Try to prevent information leak between conflicting data

sets
• A subject can’t write to some data set if it has ever had

access to another conflicting set.
• Conflicting state can be inherited: when a subject write to a

set, it transmits conflicts to that set.



Indirect Information Flow (cover channels) ?

• Authorization can be an information channel
• There’s a lot of indirect way to transmit information
• Bell&LaPadula are subject to a cover channel using access

control
• Most models enforce their policy in a limited scope (direct

information flow, over simplified operations descriptions
. . . )









Non-Interference



Security Policy ?

All these models cover different cases can’t be expressed with
each other.

We need a more powerfull property



Security Policy ?

All these models cover different cases can’t be expressed with
each other.

We need a more powerfull property



Security Policy and Security Models

One group of users, using a certain set of commands, is noninter-
fering with another group of users if what the first group does
with those commands has no effect on what the second group of
users can see.

– Goguen and Meseguer (1982)



Non-Interference

When observing a given output channel, if you can’t see changes
to another input channel, you can’t gather information from it !



Non-Interference

• Given an input channel A and an output channel B, they are
not interfering if for any possible input values on A (all
others input channels being fixed) the output value on B
won’t change.

• Using trace theory: if we only observe B outputs, we can
distinguish variations in A inputs.

• From a security point of view: public output doesn’t
depend on private input.



Non-Interference

Processus traces



Non-Interference

Processus traces



Non-Interference

Processus traces



Non-Interference

Processus traces



Flow Analysis



Non-Interference In A Functionnal World
Let t be a λ−term, δ an occurrence in t and t0 the sub-term
occurring at δ. We note C δ

t [] the context surrounding t0 and
C δ

t [t1] is the term t where t0 have been replaced by t1.

t0 is non-interfering in t, if:

∀ti, t→∗ v⇒ C δ
t [ti]→∗ v



NI And Functionnal Language

Since data and code are one, checking for NI is equivalent to
dead code detection.



Tracking flow with labels

Most flow analysis for languages derived from λ−calculus use
labels: sub-terms are marked with labels which are propagated
through the reduction process.



Using labels

((
λx.λy.x

) (
`1 : v1

)) (
`2 : v2

)
using small step operational semantics



Using labels

((
λx.λy.x

) (
`1 : v1

)) (
`2 : v2

)
→

(
λy.
(
`1 : v1

)) (
`2 : v2

)



Using labels

((
λx.λy.x

) (
`1 : v1

)) (
`2 : v2

)
→
(
`1 : v1

)



Using labels

((
λx.λy.x

) (
`1 : v1

)) (
`2 : v2

)
Obviously, v2 is non-interfering, while v1 is.



Catching Code Flow

(
` :
(
λx.e0

))
e1



Catching Code Flow

(
` :
(
λx.e0

))
e1

we want to remember the fact that the function
(
λx.e0

)
was apply to e1



Catching Code Flow

(
` :
(
λx.e0

))
e1

→ ` :
((
λx.e0

)
e1

)



Catching Code Flow

(
` :
(
λx.e0

))
e1

→
∗ ` : v

with
((
λx.e0

)
e1

)
→
∗ v



Theorem (Non-Interference in labeled calculus)

Let t be a term and t0 a sub-term of t of the form
(
` : t′0

)
, if t→∗ v and `

does not appear in v, then t0 is non-interfering in t.



Static Analysis ?

Labeled calculus provides a dynamic technique but can also be
used to build a static types system.



Static Analysis ?

Volpano&Smith introduced a simple types system for a while
language that support side effects.



Static Analysis ?

Γ ` x : `′ var Γ ` e : ` ` ≤ `′

Γ ` x← e : ` cmd

Γ ` e : `′ Γ ` s0 : `′ cmd Γ ` s1 : `′ cmd ` ≤ `′

Γ ` if e then s else s′ : ` cmd



Static Analysis ?

The full types system is sound and one can implement an inference
mechanism over it.



Static Analysis ?

Pottier&Conchon designed a system based on rewriting to gain
Information Flow Inference For Free.



A Complete System: Flow Caml

A Flow Caml Example
flow !public < !secret;;

let test a b r =
if a = b then r := 1
else r := 2;;

let a : !secret int = 42;;
let b : !public int = 42;;
let r : (!public int, ’a) ref = ref 0;;

test a b r;;



A Complete System: Flow Caml



A Complete System: Flow Caml

$ flowcamlc example.fml
File "example.fml", line 11, characters 0-10:
This expression generates the following information flow:
!secret < !public

which is not legal.



What About R-Types ?

• Flow analysis can be extended to support R-Types (like in
CDuce or XDuce.)

• Since types are leading execution, they must be integrate in
the Non-Interference property.



Non-Interference With R-Types

Let e be an expression, e0 a sub-expression occurring at δ and t a
type such that e0 : t. e0 is non-interfering w.r.t. t in e if (and only
if):

∀ei : t, e→∗ v⇒ C δ
e [ei]→∗ v



What About R-Types ?

• Languages with R-Types, semantic subtyping and type
based pattern matching can also be extend in a labeled form.

• The label mechanism is conservative (reduction with and
without labels yield the same result.)

• One can build a type system and an inference algorithm to
perform a static flow analysis.

• Issues:
• Since language like CDuce and XDuce provides overloading,

we need an inference for overloaded functions an open
(almost) issue.

• Classical systems (like ML or HM(X)) are too restrictive.



Issue With Constraint Based Inference

The term:
λ f x y.(f x, f y)

Has type:

∀[α0 ≤ α2, α1 ≤ α2].α0 → α1 → (α2 → α3)→ α3 × α3

The forced unification of the second and third parameters is too
restrictive for a flow analysis.



Application To Parallelism



Parallelism ?

NI identify links and flow. And parallelism issues are all matters
of links and flow.



Task Oriented Programming

Example:

task[res] fib(x) {
if (x < 2) {
res = x;
return;
}
var r1=0, r2=0;
f1<-invoke[r1]::fib(x-1);
f2<-invoke[r2]::fib(x-2);
wait(f1);
wait(f2);
res = r1 + r2;
return;
}

Prototype Language
Basic integer arithmetic
Spawn’n’wait task
Explicit shared vars



Tasks

• Tasks have a set of input variables (IN) and a set of output
variables (OUT)

• Two task t1 and t2 are non-interfereing if:
IN(t1) ∩ OUT(t2) = IN(t2) ∩ OUT(t1) = OUT(t1) ∩ OUT(t2) = ∅

• We can safely execute concurrently non-interfering tasks.



Proof Of Concept

• I use a type inference algorithm to build input and output
set for all tasks based on derived form of the
Hindley/Milner unification algorithm.

• Finally, using infered types, I’m able to verify that:
• no two interfering activities occurs;
• no task has depencies on variables that may get out-of-scope

before the end of the task;

• The available information can also help for placing barriers,
re-ordering operations or moving operations on local storage
(no shared locations such as variables or registers.)



Example:

task[a] f() {
a = 42;

}

task[] main() {
var y = 0, x = 0;
r <- invoke[x]::f();
y = x; // R/W conflict with task f
wait(r);
y = x; // no conflict here

}



Example:

task[a] f0() {
a = 42;

}
task[] f1(x) {
if (x > 0) {
var y = x;
r <- invoke[y]::f0();

} else {
var y = -x;
r <- invoke[y]::f0();

}
wait(r); // Scope Conflict: y has been dropped

}



Going Further ?

• A more realistic language with real features
• Pointers : a lot of trouble with aliasing
• Code generation: basic approach using thread spawning

and joining is unrealistic, we need a real task scheduling
mechanism.

• Apply this to a real language: we need to define the task
mechanism, circumvent usage of aliasing and define
whether protection mechanism (like mutex) are interference
free or not.


	Introduction
	Theory And Security
	Models And Policies
	Non-Interference

	Flow Analysis
	Application To Parallelism

