Theoretical Corner: The Non-Interference
Property

Marwan Burelle

marwan.burelle@lse.epita.fr
http://wiki-prog.infoprepa.epita. fr

http://wiki-prog.infoprepa.epita.fr

Outline

1 Introduction

2 Theory And Security
Models And Policies
Non-Interference

(O8]

Flow Analysis

~

Application To Parallelism

Non-Interference ?

What the Hell is that ?

Non-Interference ?

It’s a formal property about the link between input and output
channels of an information system.

Non-Interference ?

e Used to verify security model in information system

Non-Interference ?

e Used to verify security model in information system

¢ Used to analyse information flow in programs

Non-Interference ?

e Used to verify security model in information system
¢ Used to analyse information flow in programs

e Used to verify that a parallel system is determinist

Formal Security ?

¢ We need to define what we want:
o We need to define how to enforce it:

e We need to verify that it works:

Formal Security ?

e We need to define what we want: Security Policy
e We need to define how to enforce it:

e We need to verify that it works:

Formal Security ?

e We need to define what we want: Security Policy
¢ We need to define how to enforce it: MAC, ACL, ...
e We need to verify that it works:

Formal Security ?

e We need to define what we want: Security Policy
¢ We need to define how to enforce it: MAC, ACL, ...
e We need to verify that it works: Oh!...shit...

tory of Epita

Q>

Security Policy ?

e Military: like Bell-LaPadula model
e Commercial: like Chinese Wall model

Bell & LaPadula

e Latice of security labels

e Subjects (users or programs) have an upper bound security
level called security clearance.

¢ Objects have a level that can only be raised

Bell & LaPadula

Latice of security labels

Subjects (users or programs) have an upper bound security
level called security clearance.

Objects have a level that can only be raised

Subject s can make a read access to object o, if and only if:

clearance(o) < clearance(s)
No read-up !

Bell & LaPadula

Latice of security labels

Subjects (users or programs) have an upper bound security
level called security clearance.

Objects have a level that can only be raised

Subject s can make a read access to object o, if and only if:

clearance(o) < clearance(s)
No read-up !

s can make a write access to o, if and only if:
clearance(s) < clearance(o)
No write-down !

Chinese Wall Security

Dynamic policy based on access history

Try to prevent information leak between conflicting data
sets

A subject can’t write to some data set if it has ever had
access to another conflicting set.

Conflicting state can be inherited: when a subject write to a
set, it transmits conflicts to that set.

Indirect Information Flow (cover channels) ?

e Authorization can be an information channel
e There’s a lot of indirect way to transmit information

¢ Bell&LaPadula are subject to a cover channel using access
control

e Most models enforce their policy in a limited scope (direct
information flow, over simplified operations descriptions

)

5

ecret Level
Insider Spy

Read

<

~

Secret Data

\
3

J

ublic Level h
Attacker Create Dummy File

y,

(Secret Level)

Insider Spy fead Secret Data

Change Level
'@
|Dummy File |

\ A 4
(Public Level h
Attacker
No More Read Access
_ J

~N

ecret Level N
Insider Spy fead Secret Data

5

No Changqg

AN

\
(Public Level

Y

Attacker |Read Acce Dummy File

tory of Epita

Q>

Security Policy ?

All these models cover different cases can’t be expressed with
each other.

Security Policy ?

All these models cover different cases can’t be expressed with
each other.

We need a more powerfull property

Security Policy and Security Models

One group of users, using a certain set of commands, is noninter-
fering with another group of users if what the first group does
with those commands has no effect on what the second group of
users can see.

— Goguen and Meseguer (1982)

<

Non-Interference

When observing a given output channel, if you can’t see changes
to another input channel, you can’t gather information from it !

Non-Interference

¢ Given an input channel A and an output channel B, they are
not interfering if for any possible input values on A (all
others input channels being fixed) the output value on B
won'’t change.

e Using trace theory: if we only observe B outputs, we can
distinguish variations in A inputs.

e From a security point of view: public output doesn’t
depend on private input.

Non-Interference

Processus traces

Non-Interference

Processus traces

Non-Interference

Processus traces

Non-Interference

Processus traces

tory of Epita

Q>

Non-Interference In A Functionnal World

Let t be a A—term, 6 an occurrence in ¢ and fy the sub-term
occurring at 6. We note ‘fté[] the context surrounding fp and
‘Kté[tl] is the term t where t; have been replaced by t;.

tp is non-interfering in ¢, if:

Vi, t =" v = G0t > v

NI And Functionnal Language

Since data and code are one, checking for NI is equivalent to
dead code detection.

Tracking flow with labels

Most flow analysis for languages derived from A—calculus use
labels: sub-terms are marked with labels which are propagated
through the reduction process.

Using labels

((/\x./\y.x) (61 : vl)) (62 2 v2)

using small step operational semantics

Using labels

((/\x./\y.x) (61 : vl)) (62 2 v2)

— (/\y (51 : 2)1)) (52 . 02)

Using labels

((/\x./\y.x) (61 : vl)) (62 2 v2)

— (fl : Ul)

Using labels

((/\x./\y.x) (61 : vl)) (62 2 v2)

Obviously, v, is non-interfering, while vy is.

Catching Code Flow

(t’ : (/\x.eo)) e1

Catching Code Flow

(t’ : (/\x.eo)) e1

we want to remember the fact that the function (Ax.ey) was apply to e

Catching Code Flow

(t’ : (/\x.eo)) e1

—{: ((Ax.eo) el)

Catching Code Flow

(t’ : (/\x.eo)) e1

-0

with ((/\x.eo) el) —* 0

Theorem (Non-Interference in labeled calculus)

Let t be a term and ty a sub-term of t of the form (f : t(’)), ift > vand €
does not appear in v, then ty is non-interfering in t.

Static Analysis ?

Labeled calculus provides a dynamic technique but can also be
used to build a static types system.

Static Analysis ?

Volpano&Smith introduced a simple types system for a while
language that support side effects.

Static Analysis ?

Trx:0var Tre:€ €<
T'tx«e:fcmd

I're:t! Trsyg:emd T'rsy:¢emd €<
I'tif e then s else s’ :¢{cmd

Static Analysis ?

The full types system is sound and one can implement an inference
mechanism over it.

Static Analysis ?

Pottier&Conchon designed a system based on rewriting to gain
Information Flow Inference For Free.

Rewriting
Source Language Target Language
Reduction Reduction
Y Y

Rewriting
Source Value Target Value

A Complete System: Flow Caml

A Flow Caml Example

flow !public < !secret;;

let test a b r =
if a=bthenr :=1

else r := 2;;
let a : !secret int = 42;;
let b : !public int = 42;;

let r : (!public int, ’a) ref = ref 0;;

test a b r;;

A Complete System: Flow Caml

lpublic

lsecret

val test 3 -» =» (# int, #) ref -f# ||3-> unit

A Complete System: Flow Caml

$ flowcamlc example.fml

File "example.fml", line 11, characters 0-10:

This expression generates the following information flow:
Isecret < !public

which is not legal.

What About R-Types ?

¢ Flow analysis can be extended to support R-Types (like in
CDuce or XDuce.)

e Since types are leading execution, they must be integrate in
the Non-Interference property.

Non-Interference With R-Types

Let e be an expression, ey a sub-expression occurring at 6 and t a
type such that ¢ : t. ep is non-interfering w.r.t. t in e if (and only
if):

Ve, :t,e > v = ‘feé[ei] —" 0

What About R-Types ?

¢ Languages with R-Types, semantic subtyping and type
based pattern matching can also be extend in a labeled form.

e The label mechanism is conservative (reduction with and
without labels yield the same result.)

e One can build a type system and an inference algorithm to
perform a static flow analysis.
e Issues:
¢ Since language like CDuce and XDuce provides overloading,
we need an inference for overloaded functions an open
(almost) issue.
¢ Classical systems (like ML or HM(X)) are too restrictive.

Issue With Constraint Based Inference

The term:
Afxy(fx.fy)
Has type:

V[ag < ay, a1 < al.ap = a1 — (a2 — az) = az X az

The forced unification of the second and third parameters is too
restrictive for a flow analysis.

Q>

Parallelism ?

NI identify links and flow. And parallelism issues are all matters
of links and flow.

Task Oriented Programming

Example:

task[res] fib(x) {

if x < 2) {
res = X;
return;

}

var r1=0, r2=0;

fl<-invoke[rl]
f2<-invoke[r2]
wait(£f1l);
wait(£2);

res = rl + r2;
return;

ifib(x-1);
i fib(x-2);

Prototype Language
Basic integer arithmetic
Spawn’n’wait task
Explicit shared vars

Tasks

e Tasks have a set of input variables (IN) and a set of output
variables (OUT)

e Two task t; and t; are non-interfereing if:
IN(t1) N OUT(ty) = IN(t,) N OUT() = OUT(¢;) N OUT(t,) = 0
e We can safely execute concurrently non-interfering tasks.

Proof Of Concept

e T use a type inference algorithm to build input and output
set for all tasks based on derived form of the
Hindley/Milner unification algorithm.

e Finally, using infered types, I'm able to verify that:

® no two interfering activities occurs;
¢ no task has depencies on variables that may get out-of-scope
before the end of the task;

e The available information can also help for placing barriers,
re-ordering operations or moving operations on local storage
(no shared locations such as variables or registers.)

Example:

task[a] £ {
a = 42;
}

task[] main() {
var y = 0, x = 0;
r <- invoke[x]::fQ;
y = x; [/ R/IW conflict with task f
wait(r);
y = Xx; // no conflict here

Example:

task[a] 00O {
a = 42;
}
task[] f1(x) {
if (x> 0) {
var y = X;
r <- invoke[y]::f0(Q);
} else {
var y = -X;
r <- invoke[y]::f0Q);
}
wait(r); // Scope Conflict: y has been dropped

Going Further ?

A more realistic language with real features
Pointers : a lot of trouble with aliasing

Code generation: basic approach using thread spawning
and joining is unrealistic, we need a real task scheduling
mechanism.

Apply this to a real language: we need to define the task
mechanism, circumvent usage of aliasing and define
whether protection mechanism (like mutex) are interference
free or not.

	Introduction
	Theory And Security
	Models And Policies
	Non-Interference

	Flow Analysis
	Application To Parallelism

