
LSE
my_pikaboot

november 2022

Version 1

Daniel FRÉDÉRIC <daniel.frederic@lse.epita.fr>

Pierre-Emmanuel PATRY <pierre-emmanuel.patry@lse.epita.fr>

mailto:daniel.frederic@lse.epita.fr
mailto:pierre-emmanuel.patry@lse.epita.fr

my_pikaboot Recruitment II

Copyright

This document is for internal use only as EPITA.

Copyright © LRE

The copy of this document is subject to conditions :

▷ It is forbidden to share this document with anyone.

▷ Check that you have the latest revision of this document.

LSE

my_pikaboot Recruitment III

Contents
1 General rules IV

2 Hand out format V

3 Introduction 1

4 Build & Run 3

5 Hello world 4
5.1 Setting up the stack . 4
5.2 UART output . 4
5.3 Hello world . 4

6 Interacting with the virt plat 4
6.1 UART input . 4

7 Boot from pflash01 on virt plat 4
7.1 Booting . 4
7.2 Commands . 5

8 Memdump 5

9 Memtest 6

10 Emergency boot 6

11 Bonus 7
11.1 CRC32 check . 7
11.2 Image signature . 7
11.3 Orangepi, Vexpress . 7
11.4 pflash01 encryption . 7
11.5 Exception . 7
11.6 Debugger . 7
11.7 Gotta go fast . 7
11.8 Tftpboot . 8
11.9 Qemu black wizard . 8
11.10Free porn . 8

LSE

my_pikaboot Recruitment IV

1 General rules

The following informations are very important and should be read carefully :

Failure to comply with any of the following instructions will result in penalties up to and
including the multiplication of the final mark by 0.

These instructions are clear, unambiguous and have a precise objective. Moreover, they
are non-negotiable.

Do not fear asking if you cannot understand one of those rules.

General rules 0 : You must read the subject.
General rules 1 : You must follow the rules.
General rules 2 : You must not handout late

General rules 3 : The work must be handed as described in Hand out format.
General rules 4 : The rendered work must not contain binary, temporary, or error files
(*~, *.o, *. a, *.so, *#*, *core, *.log , *.exe, binaries, ...).
General rules 5 : However, if a binary file folder is present, it must be known from
an external source (example: a Download section of an open source project). You must
then explain in the file README its usefulness and its source.
General rules 6 : Throughout this document, case (uppercase and lowercase characters)
is very important. You must strictly respect the upper and lower case imposed in the
subject’s messages and filenames.
General rules 7 : Throughout this document, login.x corresponds to your login.
General rules 8 : Any delay, even one second, results in the non-negotiable score of 0.
General rules 9 : Cheating (sharing code, copying code or text, ...) implies at best
the non-negotiable grade of 0.
General rules 10 : If you use external code, mention it in your README. Don’t forget
that you are also graded on your approach.
General rules 11 : Any external code used and not sourced will appear as cheating.
We consider it important to draw inspiration from existing sources in order to have an
overview of the approach to follow or to improve the quality of the code. Mention it,
hiding it will only penalize you.
General rules 12 : If there are any problems with the project, you should contact the
people responsible for the subject as soon as possible at the indicated email addresses.

Advice : Do not wait too much before beginning, even if something looks easy, you will
never be protected from a stubborn bug.

LSE

my_pikaboot Recruitment V

2 Hand out format

Project managers : Daniel FRÉDÉRIC
<daniel.frederic@lse.epita.fr>
Pierre-Emmanuel PATRY
<pierre-emmanuel.patry@lse.epita.fr>

Tags : [RECRUT][BOOT]

Team size : 1

Submission procedure : git repository
Directory name : login.x-my_pikaboot
Repository url :
login@git.cri.epita.fr:p/lse/my_pikaboot-login
Date of submission : 22/12/2022 23h59
Project duration : 4 weeks

Architecture/OS : Linux
Language(s) : C/aarch64 assembly
Compiler : aarch64-linux-gnu-gcc/...-as
Compile flags : -W -Wall -Werror -std=c99

The following files are required :
Makefile The main makefile.
README Contain a project description as well as ways to build and run it,

and a list of features.

A Makefile should be present in the root directory, it shall contain those rules :
all [Default rule] launch build.
build Compile the project.
clean Remove all temporary files as well as compilation artifacts.
run Launch the build rule and then a qemu instance with the build output.

LSE

my_pikaboot Recruitment VI

Your code will be tested and inspected by a human, you should therefore respect the
given specifications in order to get points. Document your design decisions and your
failed attempts. Those things will impact your grade positively.

The expected tree structure for the project is as follows :
login.x-my_pikaboot/
login.x-my_pikaboot/README
login.x-my_pikaboot/Makefile
login.x-my_pikaboot/...

You will never lose points because of some source file (source code/headers/config) or
Makefile as long as their presence can be justified. Empty files can lead to penalties.

The make -j $(nproc) MUST ABSOLUTELY work out of the box. The login.x-
my_pikaboot/thirdparty/ folder will have the correct symlinks.

LSE

my_pikaboot Recruitment 1

3 Introduction

About this document

This document is the system part of the LSE recruitment. It contains a main part split
in several steps as well as multiple bonuses. You are expected to do as much as possible
but you are not expected to achieve all of them. You must finish the main part before
beginning any bonus.

All work will be reviewed and taken into account for the final decision. Show us your best!

The code must be written in C as well as ARM assembly.

Bare metal development

AARCH64 is an architecture designed by ARM, specifically its 64 bits version. It has
many differences with the one of your computer, amd64/ia32e. The best documentation
to understand AARCH64 is the ARM website.
(https://developer.arm.com/documentation/102374/latest/).

QEMU is a set of emulators and hypervisors for different architectures and userlands. It
support two accelerators and two mode.

QEMU version TCG KVM
qemu-system-$ARCH usable on any $ARCH usable only in the same $ARCH

with kernel support
qemu-$ARCH usable on any $ARCH,

can emulate various userlands
usable only in the same $ARCH.
Kernel-agnostic.

For this project we will use qemu-system-aarch64. It is a full system emulator of an
aarch64 board, using the TCG accelerator. It translates the AARCH64 instructions into
your host’s ones.

On the amd64 architecture, the devices are discovered dynamically through various ways,
for instance bus enumeration. The kernel must identify the device in order to probe the
driver.

The AARCH64 boards do not have generally (there are a few exceptions) ways to discover
dynamically devices. So you have to pass two parameters to QEMU: the machine and the
cpu. Their combination creates a fully functional board, with cpus features and device
tree completely defined. The used machine for this project is the virt one: it is pretty
standard and simplifies development; you won’t have to take into account complicated
device and board-specific subtilities for the core features. The combination of both trig-
gers the writing in the guest memory of a device tree, a tree representation of devices for
the linux kernel, in the form of a binary blob.

LSE

my_pikaboot Recruitment 2

Bare metal development is not your average ING1 project, there are several constraints
and limitations, amongst others, you can’t use a dynamic memory allocator for example.
If you want a libc, you’ll have to port it. You will have access to some given files. You
are expected to understand those file as they provide some tools that could make your
life easier or provide you informations about the system you’re about to set up.

For this subject you will have to set up the linux boot protocol: it’s a quite lightweight
boot protocol for the linux kernel.

A build root is given: it will set up a fully functional linux-based arm64 boot environment
from the source fetch. Make sure you are able to build it. It will be the one used to grade
your work.

LSE

my_pikaboot Recruitment 3

4 Build & Run

The first step will require to familiarize yourself with the given files. It is also highly
recommended to take a look at qemu log options and monitor mode before proceeding
further.
You will be given a whole buildroot, featuring Linux and Busybox. It is strictly forbid-
den to boot the linux kernel from the -kernel parameter directly. Trying to circumvent
the subject will be considered as cheating.

Building the buildroot may take some time. We advise you to grab some documentation
and explore the subject meanwhile. If you have troubles building the given files contact
the managers.

When everything is built, go to the ref/ subfolder. Try the command:

qemu-system-aarch64 -nographic -machine virt -cpu cortex-a72 -kernel
thirdparty/Image -initrd thirdparty/initramfs.cpio.gz -serial mon:stdio
-m 2G -smp 4

Information
If you can’t boot the linux, i.e. kernel panic, contact a maintainer with indications
on your environment. The official support is NixOS, with an additional support for
Ubuntu 22.04.

If you everything goes well, congrats ! You can start developing the bootloader. You
must be able to run the exact same linux environment.

LSE

my_pikaboot Recruitment 4

5 Hello world

For this step you need to set up a minimal environment in order to use C and achieve an
“Hello world” on your serial output.

5.1 Setting up the stack
To achieve so you’ll need to set up the stack. The stack address has already been defined
in the linker script link.ld as a section symbol. Once set up you can jump to a kmain
function defined in C.

You should add your source files to the variable in the Makefile. The offset of the linux
on the flash MUST NOT be changed unless approved by an organizer.

5.2 UART output
The UART on ARM is an MMIO device, it means accessing some special memory ad-
dresses does in fact interact with the device instead of the memory. Write a puts function
similar to puts(3) on linux which prints a string to your serial. You will find more infor-
mations about this UART in the virt platform documentation.

It is also recommended to use info qtree in the qemu monitor.

5.3 Hello world
Reuse your previous work to display an “Hello world” message from C on your serial.

6 Interacting with the virt plat

6.1 UART input
Now that you got output, you need to handle inputs from the UART0 on the virt plat.
To do so you need to implement a function such as getc as well as a CLI interface. You
can for instance make it display "pikaboot> " at the beginning of each line. Handling
deletions is not mandatory but can add some flavor to your bootloader.

7 Boot from pflash01 on virt plat

7.1 Booting
You should be able to boot the thirdparty/Image file. It is written on the flash, you can
look at Makefile for the offset. You must copy it in the RAM to be compliant to the linux
boot protocol. At the end of this part you should get the same linux+busybox setup than

LSE

my_pikaboot Recruitment 5

in the Build and Run part. Modifying the linux offset on the flash is FORBIDDEN
unless explicitely authorized.

Information
Use the given files. Add your sources and the given ones to srcs-y, try to build them
and let the Makefile generate the pflash.bin !
Do not hesitate to create a better source code architecture and adding submakefiles
with the source files !

7.2 Commands
From now on you should be able to boot a linux. From your command line you should
implement:

boot - Command that boots the kernel
help - Displays help messages for each command

Now you MUST create a command for each step. We can be able to test it individually.
A help message should be associated. The syntax should be at least precised in your
README

8 Memdump

Implement a memory dump routine. This routine will be invoked with the md command
on your serial. This command takes three arguments:

• The start address

• The address range

• The size of each load, in bytes

pikaboot> md 0 x10 60 4
0000000000000010: e 3 a 0 1 0 f f e5821004 f 5 7 f f 0 4 f e 3 2 0 f 0 0 3 | O
0000000000000020: e5901000 e1110001 0 a f f f f f b e 1 2 f f f 1 1 | / .
0000000000000030: 00000000 00000000 00000000 00000000 |
0000000000000040: 00000000 00000000 00000000 00000000 |

Memdump example

The first column represent the start address of each line. Each column then describes
the memory content displayed in hexadecimal. Lastly, the right part of the screen should
display the ascii representation of your memory, it will be handy when it comes to identify
a string.

Information
AARCH64 has strict alignment. You MUST correct the address by decreasing it.
If you can’t then abort.

LSE

my_pikaboot Recruitment 6

9 Memtest

Write a memtest routine to check whether all memory cells are writable/readable with
1/2/4/8 bytes granularity. Try also operations like bit rotation, writing bits one by one,
etc... You must indicate a progression status. Lastly, generate a report of your findings.

10 Emergency boot

For this step you should be able to boot through an UART. As the first UART is used
by your cli interface you’ll need to use the second one. You can take a look at the Kermit
project in order to understand how you should proceed to transfer the files. The most
common client for this protocol is ckermit and we therefore advise you to use it.

LSE

https://en.wikipedia.org/wiki/Kermit_(protocol)

my_pikaboot Recruitment 7

11 Bonus
These are ideas for bonuses. You are not expected to implement all of them, choose what
you want to do!

11.1 CRC32 check
It may be useful to assert an image integrity before booting. Implement a simple CRC32
code algorithm, and an appropriate command to CRC32 a part of the flash.

11.2 Image signature
You heard about some people trying to boot anything on your hardware, even special
handcrafted images. Implement a signature system to counter them.

Information
Going with the BIOS parameter is authorized if you want to sign the whole flash
content, but it is not mandatory for this part.

You MUST include a private key in your project in order for us to test this bonus. Do
NOT use this key anywhere else. Generate a new one to be used only for this project.

11.3 Orangepi, Vexpress
Add more platforms to the bootloader. Handle the proper devices to port it completely.

11.4 pflash01 encryption
You heard about some other challengers that want to reverse your flash content to steal
your submission! Encrypt it.

11.5 Exception
U-Boot is able to boot at any exception level and drop down privileges, or to dispatch
linux at EL2, thus enabling kvm. Implement the same behavior for your project.

11.6 Debugger
Implement a gdb stub in order to debug your bootloader. This behavior should be disabled
in release mode, add a compile flag.

11.7 Gotta go fast
Make your code fully functionnal with the different optimization levels. You want to test
all the features by adding optimizations successively. Doing so will help you isolate bugs.

LSE

my_pikaboot Recruitment 8

11.8 Tftpboot
It’s network time! Overcome this fear of most kernel developers and assert your dominance
over your doubts by implementing a basic network stack in order to support tftpboot.

11.9 Qemu black wizard
Did you know about semihosting mode ? Find out more about this topic and impress us.

11.10 Free porn
If you have an idea, and it is related to the subject, go for it! Remember to detail it in
your README and prepare yourself to talk about it during your defense.

LSE

	General rules
	Hand out format
	Introduction
	Build & Run
	Hello world
	Setting up the stack
	UART output
	Hello world

	Interacting with the virt plat
	UART input

	Boot from pflash01 on virt plat
	Booting
	Commands

	Memdump
	Memtest
	Emergency boot
	Bonus
	CRC32 check
	Image signature
	Orangepi, Vexpress
	pflash01 encryption
	Exception
	Debugger
	Gotta go fast
	Tftpboot
	Qemu black wizard
	Free porn

