
LSESystemsteam2018 -2019projects

Violating your package manager’s privacy
Lots of package managers use HTTPS mirrors, and some claim to provide
confidentiality (that is, hiding the list of downloaded packages from attack-
ers listening on the network) over your updates and installations. However,
the SSL or TLS protocols used do not change the size of the transmitted
data. Hence, it should be possible to calculate the size of a downloaded
package and identify a list of likely matches among the public list of pack-
ages.
This project is a proof of concept of this idea : it is an automated tool
capable of analyzing a pcap record of a TLS session and of guessing which
archlinux package was downloaded over the course of the session.

Implementing the pledge syscall on Linux
pledge(2) is a system call from OpenBSD aiming to mitigate possible
exploits on the syscall interface, in a way that the application developer
can control by specifying categories of system calls the program can use.
pledge(2) is designed with simplicity in mind, meaning it can be added
to most program with little development effort.
The Linux kernel does not currently have a similar mechanism, and the
closest mechanisms currently existing in the Linux kernel are overly com-
plicated, and are as such not broadly used.
The goal of this project is to implement this system call in the Linux ker-
nel. After considering existing options that could be leveraged, the syscall
will be implemented in the form of a prctl(2).

Tree differencing for code copy detection
Vendoring consists of making a copy of a dependency and including it in-
side another project. It is the simplest way to distribute dependencies and
make changes to their code base by versioning them in the same repository
as the main project.
However, vendoring makes tracking upstream development more difficult,
because local changes will often clash with upstream changes. Vendored
dependencies are thus often outdated, and can lack recent security fixes.
This project implements the GumTree algorithm, and uses the Clang com-
piler API to perform code copy detection on large codebases to find shared
code, potential vulnerabilities, small and large changes in a code base, or
cheating students.

Implementing an FTP client for OpenBSD
FTP is an older file transfer protocol that is still used quite often. As
a generic Operating System, OpenBSD features its own FTP client, im-
plementing many features to cater for both human users and scripting.
Although it works and is used by other programs, it is getting a bit old,
hard to maintain and works by accident. Thus the need for a clean-slate
rewrite into the modern ages.
An OpenBSD contributor started this update and wrote a nice base that
handled basic operations. However, it had some behavior differences,
lacked documentation and many common features.
This provided a good code base, but a lot still needs to be done.

Accelerate Boolean Constraint Propagation for Boolean Satisfiability Solvers with FPGA
Boolean Satisfiability (or SAT) problem consists of finding if a set of Boolean values that satisfies a given Boolean formula exists. SAT, even though it was
the first problem to be proven NP-complete, is used in fields like circuit design, symbolic execution and automatic theorem proving. The algorithm used
to solve SAT problems is arborescent but its most time consuming operation, the Boolean Constraint Propagation (BCP), is a good target for hardware
acceleration.
Based on the work of John D. Davis et al., the goal is to design a co-processor that computes only the BCP part of the SAT algorithm. The arborescent
part is computed by a CPU that sends BCP problems to the co-processor when needed. The design is written with an Hardware Description Language
(HDL) and is tested on a Field-Programmable Gate Array (FPGA).

Execution trace analysis
A large part of binary analysis is figuring out what obfuscated executables
actually do, and writing tools that can systematically simplify obfuscated
code can help a lot. In order to reverse engineer obfuscated binaries,
we want to disassemble and lift native code back to LLVM intermediate
representation (IR) to be able to run optimization and simplification passes
on the "higher-level" IR. The thing is: often in obuscated code, there is
much indirection in what is actually going on under the hood (useless
operations with side-effects, virtual machines...). To bypass this problem
we can concentrate only on the code that is really executed by working on
an execution trace rather than the executable directly. From this execution
trace, we will build a control flow graph (CFG) of the program execution,
made of assembly basic blocks that represents the flow of execution of the
actual binary. This CFG can then be used to recover an IR program which
has the same behavior as the original program, and that can be decompiled
to pseudo-C or recompiled to native code for further analysis.

Secure lazy binding in x86_64
Dynamic relocation is the act of loading all the needed libraries of a binary
before executing it, and of writing all the needed symbol addresses inside
the loaded binary. Addresses can be written at two different times:
1. Before the execution: bind now.
2. During the execution, when the symbol is used: lazy binding.
The drawback of the lazy binding is that it needs to write to the binary
at runtime. To avoid switching between RO and RW permissions every
time ld.so writes to memory, OpenBSD created the kbind(2) syscall, which
enables ld.so to write to RO memory, and makes sure that only one code
location can execute the syscall, making sure that ld.so is the only entity
that can use it.
The goal of this project is to implement this syscall under a Linux OS and
a common architecture, here x86_64, and use it in the ld.so of the glibc,
to enable fully RO lazy binding.

Network stack in K
K is a simple kernel implementation, in which the user can only play single
player games. The goal of this project is to implement a network stack
in order to play in multiplayer mode on some games. This implies to
implement all the interactions from the network card driver to the user
space system calls permitting to send network packets. The stack that is
implemented here handles ICMP, IP, ARP, UDP and DHCP requests, as it is
necessary in order to discover network, request an IP, and send packets.
This work relies on W. Richard Stevens work and on the implementation
he has described in TCP/IP Illustrated book, which explains the feature
of BSD-Lite’s network stack implementation.

YML kernel
Most kernel components are really hard to modify on an already functional
modern kernel, and developping a new one from scratch requires a lot
of work on various parts of the kernel. This can be a real barrier for
newcommers in kernel development.
YML is a highly modular kernel designed for components to be swapped. It
features most of modern Kernel functionnalities like EFI boot, APIC and
ACPI handling. The aim of this kernel is to be used for educational and
research purposes.

BitTorrent for iPXE
Many enterprise computers have no hard disk, and download their oper-
ating system from scratch on each boot. This process uses up a lot of
bandwidth, and exceptionnal situations, such as all machines being pow-
ered up at the same time, can bring a network to its knees.
However, computers close to each other can share already downloaded
parts of the operating system to avoid making more requests to some
central server. This project is about adding support for the BitTorrent
peer-to-peer protocol into iPXE, a network specialized bootloader.


