To cache or not to cache

making pkg add faster

Marc Espie <espie@openbsd.org>, <espie®@lse.epita.fr>

June 3, 2022

Marc Espie <espie@openbsd.org>, <espieQlse.epita.fr> To cache or not to cache making pkg add faster

Teaser

This is just a "lightning talk" to give you some of the recent elements. There is more
to the story, which will get expanded upon in this year's summer week, hopefully

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

The story so far

pkg_add is a tool specific to OpenBSD. Historically, we do "just in time" updates.
@ open new package and peek at meta information
o decide whether we want to update

o if so, extract the new package, then delete the old one

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

The meta information

We got structured information (packing-lists) that looks like this:

@pkgpath x11/dbus

@newgroup _dbus:572

@newuser _dbus:572:_dbus::dbus user:/nonexistent:/sbin/nologin
@extra ${SYSCONFDIR}/machine-id

@rcscript ${RCDIR}/messagebus

© 0 N O U ke W N =

e
w N = O

@bin
@bin
@bin
@bin
@bin
@bin
@bin
[...

bin/dbus-cleanup-sockets
bin/dbus-daemon
bin/dbus-launch
bin/dbus-monitor
bin/dbus-run-session
bin/dbus-send
bin/dbus-test-tool

more files]

This is the source information for the dbus package, telling us it requires some
user/groups, has a service start-up script, and contains a bunch of files

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

The whole story |

After going through pkg_create, the full packing-list looks more like

Oname dbus-1.14.0v0

@version 8

Qcomment pkgpath=x11/dbus,-main ftp=yes

@arch amd64

+DESC

@sha TYbBC2007XX0XgnQOFU6qikEuiN+fqoN2azXrJA9jJg=
Qsize 448

@pkgpath x11/dbus

@wantlib X11.18.0

@wantlib c.96.1

Owantlib execinfo.3.0

Owantlib expat.14.0

@wantlib pthread.26.1

Owantlib xcb.4.1

@newgroup _dbus:572

@newuser _dbus:572:_dbus: :dbus user:/nonexistent:/sbin/nologin
@cwd /usr/local

© 0 N Ut W N

e e e e
N O g s W N = O

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

The whole story Il

18 @extra /etc/machine-id

19 @rcscript /etc/rc.d/messagebus

20 Osha G8InGFO0+1EO0iPUMpXqicxPO1KEkofHOguRhxV9sMXHk=
21 @size 172

22 @ts 1653570364

23 @bin bin/dbus-cleanup-sockets

24 @sha 1ew9j03YckJ1VnMPtypbKhlkleedAXgwCvYU3hE44 jU=
25 @size 13318

26 Q@ts 1653570364

27 [... more files]

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

Structured information

@ a packing-list is a structured object which has constructors. Most often it starts as
my $plist = OpenBSD::Packinglist->from_file("filename");

@ objects (packing elements) can be added to it using the right method:
OpenBSD: :PackingElement: :Wantlib->add($plist, $w);

@ some complex objects can have a multiline representation, like files:

name

extra modes

checksum

timestamp

ownership

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

OO properties

@ there's a whole hierarchy of objects: anything file-system related is a FileObject,
annotations are Meta, anything depend-related is a Depend

@ objects are emitted in a specific order: first all the meta information, then the
actual objects (in order)

@ most operations happen as visitors on the packing-list

@ there are specialized scanners that take advantage of the text structure of the
packing-list to avoid reading it all

1 sub DependOnly

2 {

3 my ($fh, $cont) = @_;

4 while (<$fh>) {

5 if (m/~\@(?7:1libset|depend|wantlibl|define-tag)\b/o) {
6 &$cont ($_);

7 # XXX optimization

8 } elsif (m/~\@(?7:newgroup|newuser|cwd)\b/o) {
9 last;

10 }

11 }

Marc Espie <espie@openbsd.org>, <espieQlse.epita.fr> To cache or not to cache making pkg add faster

In order to decide whether to update a package
@ we look up all packages that have the same name with a different version number
@ we open every package to see whether it's a valid candidate
o we filter the ones we don't want
o

pathological case: autoconf. We have a branch for each version, which means 17
packages to consider.

. and we decide to update

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

Slower and slower

@ for a long time, the network was slow, bandwidth-wise, so opening lots of files was
not a big issue

@ actually properly closing was an issue with ftp: premature closing requires full
telnet support (with "attention" commands")

@ and so | had to fix ftp-proxy back in the day

@ ... but recently, latency is more of an issue, most people have lots of bandwidth,
and so does our current setup

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

CDN for the masses

We got a CDN
e ftp is dead, long live http(s).
@ establishing connections might be a bit slow
@ the cdn first gives you a redirect which means two connections

@ we've parsed the redirect from the start, to make sure an update connects to
exactly one mirror

@ bandwidth is not an issue, latency is

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr>

To cache or not to cache making pkg add faster

https 7 not such a good idea

@ http connection establishment is 13 RTT

@ httpsis 2 3 RTT at best !

@ we did implement session resumption (with fun results)

@ ... so updates is slow, because we establish lots of connections
°

also, signatures

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

Signatures 7

untrusted comment: verify with openbsd-69-pkg.pub
RWSG2ib5ZXSEQTrcxxj+A9b60eFI/0iJVB49nvIs+UPIull+Mk/Bc1TXRuG4a+XbnyoiZf fDILfP58BNelKOyMjZNE
date=2021-02-26T23:06:32Z

key=/etc/signify/openbsd-69-pkg.sec

algorithm=SHA512/256

blocksize=65536

9d61ddfc76218e7c3745bd942a29725ff1bc651f64af27a450da33a73£292d69
8621c7932e29¢838783177287£fc5779186c854b35eaab41e787979£78288c2a6
d895cc173¢cb9058341bbcbebabe3c018b915eb9218£d65¢c31£490£9af9c11041
9895735d7a109e497e£f3£f616£35938ae4d6e66£851f038bab0aa2a69808ef53a
ce23313490656aaeda9b21aal137a7e70£fb268db9372cafeefe860e3fb98c4dfb
d34eedc74d714c7a5702b386d36ee422d614d0239cf45e3ae417dd5cd6a09f6f
55330726£9221£239¢76d4809463ebc251a634360£7098c££98931£8948b7669
e84f66e180f1be0c5ef057ea2c4bc74106791b6b794e2de74dc56a9968fa8410
e2e4283c8laceB8474a32dfc6e43fa3515f02e9bdc93daa86d84875cf9d4ac72d
aalb88blca21bf13dc132fd12e485cf0edebc787eeb3adcf6df6aa8dbebeb611
9f6723f0419bc16b0a1230407ab3e25015dda27793c424bc50ab6acedf7dedale

© W N e W N

e e T e =
W N O g os W N = O

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

chicken and egg

We'd like to store the update info somewhere but
@ we don't have any db tools in the base system

@ we need to generate and grab it securely from the cdn

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

@ But we have locate in the base system.

@ it's been designed to store efficiently "similar" strings (by sorting and compressing
according to prefix)

@ already used for pkglocatedb
e this stores each path in packages prefixed by the pkgname/path location

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

pkglocatedb

© 00 N O U R W N =

[un
(=]

nausicaa$ pkglocate /usr/local/bin/vim
graphviz-2.42.3p0:math/graphviz, -main:/usr/local/bin/vimdot

vim-8.
vim-8.
vim-8.
vim-8.
vim-8.
vim-8.
vim-8.

[...]

2.

2
2
2
2
2
2

5036-gtk3-lua:editors/vim, -main,gtk3,lua: /usr/local/bin/vim

.5036-gtk3-lua:editors/vim,-main,gtk3,lua: /usr/local/bin/vimdiff
.5036-gtk3-1lua:editors/vim,-main,gtk3,lua: /usr/local/bin/vimtutor
.5036-gtk3-perl-python3-ruby:editors/vim,-main,gtk3,perl,python3,ruby: /usr/local/bii
.5036-gtk3-perl-python3-ruby:editors/vim,-main,gtk3,perl,python3,ruby:/usr/local/bi
.5036-gtk3-perl-python3-ruby:editors/vim,-main,gtk3,perl,python3,ruby: /usr/local/bi:
.5036-gtk3-python3:editors/vim,-main, gtk3,python3: /usr/local/bin/vim

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

pkglocatedb 2

o It is very efficient: 300MB compress to 23MB
o It is fast

@ It is in the base system

Marc Espie <espie@openbsd.org>, <espieQlse.epita.fr> To cache or not to cache making pkg add faster

locate vs updateinfo

@ generate data with pkgname:update-info-line

@ this should compress correctly

@ where to put it to make this accessible

o | did a script that worked. Compression is okay (compresses 23M to 3M)

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

chicken and egg too

@ | gave the script to my fellow builders and asked for pkgindex.tgz to be on the
mirrors

e they did it for a while, but | got distracted
@ and then they no longer did it

@ right when | got motivated again

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

so better integration

@ it had to be on, all the time. Add glue at the end of dpb to generate it 7
o delivery system. Sign it specifically ? teach pkg_add how to read it ?

@ scrape that, let's use quirks

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

@ Quirks is the package that holds "Exceptions" to the rules (such as package
renames, or packages that got dropped).

e First action of pkg_add ever is always to try to update quirks.

@ So it's a natural location to drop update info

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

first experiment

@ so | got the script that builds the db into quirks
@ told my friends to always regenerate quirks at the end

@ and waited for the new package to show up

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

Timings: whazzza

o (there was a small issue with "always-update" packages, let's avoid them)
@ try to grab the updateinfo from the locate before going to the packages
@ result over twenty times speed-up

@ so worth making it work

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

@ the db is linked to a given quirks, which means a given package repository.
@ this is not a big issue because we got unique objects for repositories

o furthermore, quirks is an "always-update" package, so if we find we don't need to
update it, it means the quirks we got contains update info for our packages

@ we can actually put that in production !

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

more speed-ups |

@ we run a separate locate for each updateinfo
@ we can actually run a single locate upfront, because we got the list of pkgnames
we want to handle

sub prime_update_info_cache

{
my ($self, $state, $setlist) = @_;

my $progress = $state->progress;
my $found = {};

my $pseudo_search = [$self];

© 0 N U W N

for my $set (@{$setlist}) {
for my $h ($set->older, $set->hints) {
next if $h->{update_found};
my $name = $h->pkgname;
my $stem = OpenBSD::PackageName: :splitstem($name) ;

e e e
=W N = O

Marc Espie <espie@openbsd.org>, <espieQlse.epita.fr> To cache or not to cache making pkg add faster

more speed-ups |l

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

next if $stem =" m/~\.libs\d*\-/;

next if $stem =" m/~partiall-/;

$stem =~ s/\V%.*//; # zap branch info
$stem =" s/\-\-.%//; # and set flavors
$self->add_stem($stem);

}
}
my @list = sort keys %{$self->{stemsl}};
return if @list == 0;

my $total = scalar @list;
$progress->set_header (
$state->f ("Reading update info for installed packages",

$total));
my $done = 0;
my $oldname = "";
open my $fh, "-|", $self->pipe_locate(map { "$_-[0-9]1*"} @list)

Marc Espie <espie@openbsd.org>, <espieQlse.epita.fr> To cache or not to cache making pkg add faster

more speed-ups I

33 or $state->fatal("Can't run locate: #1", $!);

34 while (<$fh>) {

35 if (m/~Cx?)\: (%) /) {

36 my ($pkgname, $value) = ($1, $2);

37 $found->{0penBSD: : PackageName: : splitstem($pkgname)} = 1;
38 $self->{raw_data}{$pkgname} //= '';

39 $self->{raw_data}{$pkgname} .= "$value\n";
40 if ($pkgname ne $oldname) {

41 $oldname = $pkgname;

42 $done++;

43 }

44 $progress->show($done, $total);

45 }

46 }

47 close($£fh);

48 return unless $state->defines("CACHING_VERBOSE");

49 for my $k (@list) {

50 if (!defined $found->{$k}) {

Marc Espie <espie@openbsd.org>, <espieQlse.epita.fr> To cache or not to cache making pkg add faster

re speed-ups IV

51 $state->say("No cache entry for #1", $k);
52 }

53 }

54 }

Marc Espie <espie@openbsd.org>, <espieQlse.epita.fr> To cache or not to cache making pkg add faster

always-update

at first those were not handled at all
it means a package that needs an update each time it changes
after a few tries, | decided that storing a crypto hash would work

so now it is @option always-update <hash value>

and pkg_create generates it

Marc Espie <espie@openbsd.org>, <espie@Ise.epita.fr> To cache or not to cache making pkg add faster

the generation of quirks

Rougly ten lines in dpb:

1 if ($state->{alll}) {

2 my $core = DPB::Core->get;

3 my $w = DPB::PkgPath->new('devel/quirks');

4 if ($state->{engine}{built_packages}) {

5 $state->grabber->clean_packages($core, $w->fullpkgpath);
6 }

7 my $subdirlist = {};

8 $w->add_to_subdirlist($subdirlist);

9 $state->grabber->grab_subdirs($core, $subdirlist, undef);
10 $state->engine->check_buildable;

11 $core->mark_ready;

12 main_loop();

13}

Marc Espie <espie@openbsd.org>, <espieQlse.epita.fr> To cache or not to cache making pkg add faster

that's all folks

Questions 7 more fun details in the summer week

Marc Espie <espie@openbsd.org>, <espieQlse.epita.fr> To cache or not to cache making pkg add faster

