
To cache or not to cache
making pkg_add faster

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr>

June 3, 2022

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 1 / 31

Teaser

This is just a "lightning talk" to give you some of the recent elements. There is more
to the story, which will get expanded upon in this year’s summer week, hopefully

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 2 / 31

The story so far

pkg_add is a tool specific to OpenBSD. Historically, we do "just in time" updates.
open new package and peek at meta information
decide whether we want to update
if so, extract the new package, then delete the old one

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 3 / 31

The meta information

We got structured information (packing-lists) that looks like this:
1 @pkgpath x11/dbus
2 @newgroup _dbus:572
3 @newuser _dbus:572:_dbus::dbus user:/nonexistent:/sbin/nologin
4 @extra ${SYSCONFDIR}/machine-id
5 @rcscript ${RCDIR}/messagebus
6 @bin bin/dbus-cleanup-sockets
7 @bin bin/dbus-daemon
8 @bin bin/dbus-launch
9 @bin bin/dbus-monitor

10 @bin bin/dbus-run-session
11 @bin bin/dbus-send
12 @bin bin/dbus-test-tool
13 [... more files]

This is the source information for the dbus package, telling us it requires some
user/groups, has a service start-up script, and contains a bunch of files

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 4 / 31

The whole story I

After going through pkg_create, the full packing-list looks more like
1 @name dbus-1.14.0v0
2 @version 8
3 @comment pkgpath=x11/dbus,-main ftp=yes
4 @arch amd64
5 +DESC
6 @sha TYbBC2oO7XXOXqnQOFU6qikEuiN+fqoN2azXrJA9jJg=
7 @size 448
8 @pkgpath x11/dbus
9 @wantlib X11.18.0

10 @wantlib c.96.1
11 @wantlib execinfo.3.0
12 @wantlib expat.14.0
13 @wantlib pthread.26.1
14 @wantlib xcb.4.1
15 @newgroup _dbus:572
16 @newuser _dbus:572:_dbus::dbus user:/nonexistent:/sbin/nologin
17 @cwd /usr/local

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 5 / 31

The whole story II

18 @extra /etc/machine-id
19 @rcscript /etc/rc.d/messagebus
20 @sha G8InGFO+lEOiPUMpXqicxPO1KEkofHOguRhxV9sMXHk=
21 @size 172
22 @ts 1653570364
23 @bin bin/dbus-cleanup-sockets
24 @sha lew9j03YckJ1VnMPtypbKh1k1eedAXgwCvYU3hE44jU=
25 @size 13318
26 @ts 1653570364
27 [... more files]

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 6 / 31

Structured information

a packing-list is a structured object which has constructors. Most often it starts as
my $plist = OpenBSD::PackingList->from_file("filename");

objects (packing elements) can be added to it using the right method:
OpenBSD::PackingElement::Wantlib->add($plist, $w);

some complex objects can have a multiline representation, like files:
name
extra modes
checksum
timestamp
ownership

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 7 / 31

OO properties
there’s a whole hierarchy of objects: anything file-system related is a FileObject,
annotations are Meta, anything depend-related is a Depend
objects are emitted in a specific order: first all the meta information, then the
actual objects (in order)
most operations happen as visitors on the packing-list
there are specialized scanners that take advantage of the text structure of the
packing-list to avoid reading it all

1 sub DependOnly
2 {
3 my ($fh, $cont) = @_;
4 while (<$fh>) {
5 if (m/^\@(?:libset|depend|wantlib|define-tag)\b/o) {
6 &$cont($_);
7 # XXX optimization
8 } elsif (m/^\@(?:newgroup|newuser|cwd)\b/o) {
9 last;

10 }
11 }
12 }
Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 8 / 31

Speed

In order to decide whether to update a package
we look up all packages that have the same name with a different version number
we open every package to see whether it’s a valid candidate
we filter the ones we don’t want
pathological case: autoconf. We have a branch for each version, which means 17
packages to consider.
... and we decide to update

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 9 / 31

Slower and slower

for a long time, the network was slow, bandwidth-wise, so opening lots of files was
not a big issue
actually properly closing was an issue with ftp: premature closing requires full
telnet support (with "attention" commands")
and so I had to fix ftp-proxy back in the day
... but recently, latency is more of an issue, most people have lots of bandwidth,
and so does our current setup

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 10 / 31

CDN for the masses

We got a CDN
ftp is dead, long live http(s).
establishing connections might be a bit slow
the cdn first gives you a redirect which means two connections
we’ve parsed the redirect from the start, to make sure an update connects to
exactly one mirror
bandwidth is not an issue, latency is

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 11 / 31

https ? not such a good idea

http connection establishment is 1 ½ RTT
https is 2 ½ RTT at best !
we did implement session resumption (with fun results)
... so updates is slow, because we establish lots of connections
also, signatures

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 12 / 31

Signatures ?

1 untrusted comment: verify with openbsd-69-pkg.pub
2 RWSG2ib5ZXSfQTrcxxj+A9b6oeFI/OiJVB49nvIs+UPIull+Mk/BclTXRuG4a+XbnyoiZffDILfP58BNelK0yMjZNEEfPiR6OQA=
3 date=2021-02-26T23:06:32Z
4 key=/etc/signify/openbsd-69-pkg.sec
5 algorithm=SHA512/256
6 blocksize=65536
7

8 9d61ddfc76218e7c3745bd942a29725ff1bc651f64af27a450da33a73f292d69
9 8621c7932e29c838783177287fc5779186c854b35eaa541e787979f78288c2a6

10 d895cc173cb9058341bbcbe6abe3c018b915eb9218fd65c31f490f9af9c11041
11 9895735d7a109e497ef3f616f35938ae4d6e66f851f038ba50aa2a69808ef53a
12 ce23313490656aaeda9b21aa137a7e70fb268db9372cafeefe860e3fb98c4dfb
13 d34eedc74d714c7a5702b386d36ee422d614d0239cf45e3ae417dd5cd6a09f6f
14 55330726f9221f239c76d4809463ebc251a634360f7098cff98931f8948b7669
15 e84f66e180f1be0c5ef057ea2c4bc74106791b6b794e2de74dc56a9968fa8410
16 e2e4283c81ace8474a32dfc6e43fa3515f02e9bdc93daa86d84875cf9d4ac72d
17 aa1588b1ca21bf13dc132fd12e485cf0edebc787ee53a4cf6df6aa8d5e5e5611
18 9f6723f0419bc16b0a1230407ab3e25015dda27793c424bc50a6ace4f7de4a2e

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 13 / 31

chicken and egg

We’d like to store the update info somewhere but
we don’t have any db tools in the base system
we need to generate and grab it securely from the cdn

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 14 / 31

no database

But we have locate in the base system.
it’s been designed to store efficiently "similar" strings (by sorting and compressing
according to prefix)
already used for pkglocatedb
this stores each path in packages prefixed by the pkgname/path location

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 15 / 31

pkglocatedb

1 nausicaa$ pkglocate /usr/local/bin/vim
2 graphviz-2.42.3p0:math/graphviz,-main:/usr/local/bin/vimdot
3 vim-8.2.5036-gtk3-lua:editors/vim,-main,gtk3,lua:/usr/local/bin/vim
4 vim-8.2.5036-gtk3-lua:editors/vim,-main,gtk3,lua:/usr/local/bin/vimdiff
5 vim-8.2.5036-gtk3-lua:editors/vim,-main,gtk3,lua:/usr/local/bin/vimtutor
6 vim-8.2.5036-gtk3-perl-python3-ruby:editors/vim,-main,gtk3,perl,python3,ruby:/usr/local/bin/vim
7 vim-8.2.5036-gtk3-perl-python3-ruby:editors/vim,-main,gtk3,perl,python3,ruby:/usr/local/bin/vimdiff
8 vim-8.2.5036-gtk3-perl-python3-ruby:editors/vim,-main,gtk3,perl,python3,ruby:/usr/local/bin/vimtutor
9 vim-8.2.5036-gtk3-python3:editors/vim,-main,gtk3,python3:/usr/local/bin/vim

10 [...]

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 16 / 31

pkglocatedb 2

It is very efficient: 300MB compress to 23MB
It is fast
It is in the base system

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 17 / 31

locate vs updateinfo

generate data with pkgname:update-info-line

this should compress correctly
where to put it to make this accessible
I did a script that worked. Compression is okay (compresses 23M to 3M)

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 18 / 31

chicken and egg too

I gave the script to my fellow builders and asked for pkgindex.tgz to be on the
mirrors
they did it for a while, but I got distracted
and then they no longer did it
right when I got motivated again

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 19 / 31

so better integration

it had to be on, all the time. Add glue at the end of dpb to generate it ?
delivery system. Sign it specifically ? teach pkg_add how to read it ?
scrape that, let’s use quirks

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 20 / 31

quirks ?

Quirks is the package that holds "Exceptions" to the rules (such as package
renames, or packages that got dropped).
First action of pkg_add ever is always to try to update quirks.
So it’s a natural location to drop update info

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 21 / 31

first experiment

so I got the script that builds the db into quirks
told my friends to always regenerate quirks at the end
and waited for the new package to show up

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 22 / 31

Timings: whazzza

(there was a small issue with "always-update" packages, let’s avoid them)
try to grab the updateinfo from the locate before going to the packages
result over twenty times speed-up
so worth making it work

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 23 / 31

details

the db is linked to a given quirks, which means a given package repository.
this is not a big issue because we got unique objects for repositories
furthermore, quirks is an "always-update" package, so if we find we don’t need to
update it, it means the quirks we got contains update info for our packages
we can actually put that in production !

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 24 / 31

more speed-ups I

we run a separate locate for each updateinfo

we can actually run a single locate upfront, because we got the list of pkgnames
we want to handle

1 sub prime_update_info_cache
2 {
3 my ($self, $state, $setlist) = @_;
4

5 my $progress = $state->progress;
6 my $found = {};
7

8 my $pseudo_search = [$self];
9

10 for my $set (@{$setlist}) {
11 for my $h ($set->older, $set->hints) {
12 next if $h->{update_found};
13 my $name = $h->pkgname;
14 my $stem = OpenBSD::PackageName::splitstem($name);

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 25 / 31

more speed-ups II

15 next if $stem =~ m/^\.libs\d*\-/;
16 next if $stem =~ m/^partial\-/;
17 $stem =~ s/\%.*//; # zap branch info
18 $stem =~ s/\-\-.*//; # and set flavors
19 $self->add_stem($stem);
20 }
21 }
22 my @list = sort keys %{$self->{stems}};
23 return if @list == 0;
24

25 my $total = scalar @list;
26 $progress->set_header(
27 $state->f("Reading update info for installed packages",
28 $total));
29 my $done = 0;
30 my $oldname = "";
31

32 open my $fh, "-|", $self->pipe_locate(map { "$_-[0-9]*"} @list)

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 26 / 31

more speed-ups III

33 or $state->fatal("Can't run locate: #1", $!);
34 while (<$fh>) {
35 if (m/^(.*?)\:(.*)/) {
36 my ($pkgname, $value) = ($1, $2);
37 $found->{OpenBSD::PackageName::splitstem($pkgname)} = 1;
38 $self->{raw_data}{$pkgname} //= '';
39 $self->{raw_data}{$pkgname} .= "$value\n";
40 if ($pkgname ne $oldname) {
41 $oldname = $pkgname;
42 $done++;
43 }
44 $progress->show($done, $total);
45 }
46 }
47 close($fh);
48 return unless $state->defines("CACHING_VERBOSE");
49 for my $k (@list) {
50 if (!defined $found->{$k}) {

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 27 / 31

more speed-ups IV

51 $state->say("No cache entry for #1", $k);
52 }
53 }
54 }

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 28 / 31

always-update

at first those were not handled at all
it means a package that needs an update each time it changes
after a few tries, I decided that storing a crypto hash would work
so now it is @option always-update <hash value>

and pkg_create generates it

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 29 / 31

the generation of quirks

Rougly ten lines in dpb:
1 if ($state->{all}) {
2 my $core = DPB::Core->get;
3 my $w = DPB::PkgPath->new('devel/quirks');
4 if ($state->{engine}{built_packages}) {
5 $state->grabber->clean_packages($core, $w->fullpkgpath);
6 }
7 my $subdirlist = {};
8 $w->add_to_subdirlist($subdirlist);
9 $state->grabber->grab_subdirs($core, $subdirlist, undef);

10 $state->engine->check_buildable;
11 $core->mark_ready;
12 main_loop();
13 }

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 30 / 31

that’s all folks

Questions ? more fun details in the summer week

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> To cache or not to cache making pkg_add faster 31 / 31

