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goroutines??

A goroutine is a lightweight thread managed by the Go runtime.
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goroutines ??

A goroutine is a lightweight thread managed by the Go runtime.

They are called lightweight threads because they require less processing time :

• Smaller default stack size
• Lighter context switching : setup and teardown don’t require call to the kernel.
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User-threads

Ok so basically they are just user threads : an implementation of threads and scheduling running on top of the OS.
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User-threads

Ok so basically they are just user threads : an implementation of threads and scheduling running on top of the OS.

But wait how is this a good idea ? Why is it cool to reimplement something already provided by your kernel ?
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User-threads ideas

Some nice ideas to make profit of user threads :

• Allocate kernel threads when creating the first user threads.
• Park for reuse the kernel threads after the user thread ends.
• Schedule user threads to run on respecting kernel threads.
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User-threads implementation

Multiplexing low-cost user-threads on high-cost kernel threads :

Figure 1: A user threads runs on an associated kernel thread.
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User-threads implementating

Figure 2: Multiple user thread can run on the same associated kernel thread.
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Scheduling concepts

The scheduler manages a runqueue of runnable goroutines.

When it wants to schedule a goroutine it pops it out of the runqueue and schedules it on a available kernel thread (instantiating one if
needed and possible).
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Scheduling concepts

The scheduler manages a runqueue of runnable goroutines and per-core runqueues of runnable goroutines.

Work-stealing scheduling: When it wants to schedule a goroutine on a kernel thread it first try to pop it from the local runqueue, if
failed it tries to steal it from other local runqueues and finally it tries the global runqueue.
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Go implementations

Go implements theses concepts through 3 important structures in the runtime code :

The G struct (Goroutine) The M struct (Kernel Thread) The P struct (Linked List)

- Represents a runnable goroutine - Represents a kernel thread - Represents a scheduling context
- Contains informations about its stack - Contains two important pointers: - Contains a list of runnable Gs.
its current status and its associated one to the currently running G and
P. another one to its attached P.
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The G struct

From the go runtime source code : https://golang.org/src/runtime/runtime2.go

type g struct {
stack stack // offset known to runtime/cgo

...
param unsafe.Pointer // passed parameter on wakeup
atomicstatus uint32
goid int64
schedlink guintptr
waitsince int64 // approx time when the g become blocked
waitreason waitReason // if status==Gwaiting

...
tracelastp puintptr // last P emitted an event for this goroutine

};
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The M struct

type m struct {
...

curg *g // current running goroutine
caughtsig guintptr // goroutine running during fatal signal
p puintptr // attached p for executing go code (nil if not executing go code)
nextp puintptr
oldp puintptr // the p that was attached before executing a syscall
id int64
spinning bool // m is out of work and is actively looking for work

...
};

go
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The P struct

type p struct {
id int32

status uint32 // one of pidle/prunning/...
m muintptr // back-link to associated m (nil if idle)
runqhead uint32
runqtail uint32
runq [256]guintptr
// runnext, if non-nil, is a runnable G that was ready'd by
// the current G and should be run next instead of what's in
// runq if there's time remaining in the running G's time
// slice. It will inherit the time left in the current time
// slice ...
runnext guintptr

...
};
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Maybe with a drawing ?
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Why would we separe M from G?

The idea is that when a M (a kernel thread) is blocked (on a syscall for exemple), the go scheduler can take its runqueue (its P) and give
it to an other M.
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What happens when blocking
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Questions ?

Questions ?
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Lolwhat
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