
Goroutines demystified.

Mathieu Nativel

1/19



goroutines??

A goroutine is a lightweight thread managed by the Go runtime.

2/19



goroutines ??

A goroutine is a lightweight thread managed by the Go runtime.

They are called lightweight threads because they require less processing time :

• Smaller default stack size
• Lighter context switching : setup and teardown don’t require call to the kernel.

3/19



User-threads

Ok so basically they are just user threads : an implementation of threads and scheduling running on top of the OS.

4/19



User-threads

Ok so basically they are just user threads : an implementation of threads and scheduling running on top of the OS.

But wait how is this a good idea ? Why is it cool to reimplement something already provided by your kernel ?

5/19



User-threads ideas

Some nice ideas to make profit of user threads :

• Allocate kernel threads when creating the first user threads.
• Park for reuse the kernel threads after the user thread ends.
• Schedule user threads to run on respecting kernel threads.

6/19



User-threads implementation

Multiplexing low-cost user-threads on high-cost kernel threads :

Figure 1: A user threads runs on an associated kernel thread.

7/19



User-threads implementating

Figure 2: Multiple user thread can run on the same associated kernel thread.

8/19



Scheduling concepts

The scheduler manages a runqueue of runnable goroutines.

When it wants to schedule a goroutine it pops it out of the runqueue and schedules it on a available kernel thread (instantiating one if
needed and possible).

9/19



Scheduling concepts

The scheduler manages a runqueue of runnable goroutines and per-core runqueues of runnable goroutines.

Work-stealing scheduling: When it wants to schedule a goroutine on a kernel thread it first try to pop it from the local runqueue, if
failed it tries to steal it from other local runqueues and finally it tries the global runqueue.

10/19



Go implementations

Go implements theses concepts through 3 important structures in the runtime code :

The G struct (Goroutine) The M struct (Kernel Thread) The P struct (Linked List)

- Represents a runnable goroutine - Represents a kernel thread - Represents a scheduling context
- Contains informations about its stack - Contains two important pointers: - Contains a list of runnable Gs.
its current status and its associated one to the currently running G and
P. another one to its attached P.

11/19



The G struct

From the go runtime source code : https://golang.org/src/runtime/runtime2.go

type g struct {
stack stack // offset known to runtime/cgo

...
param unsafe.Pointer // passed parameter on wakeup
atomicstatus uint32
goid int64
schedlink guintptr
waitsince int64 // approx time when the g become blocked
waitreason waitReason // if status==Gwaiting

...
tracelastp puintptr // last P emitted an event for this goroutine

};

12/19

https://golang.org/src/runtime/runtime2.go


The M struct

type m struct {
...

curg *g // current running goroutine
caughtsig guintptr // goroutine running during fatal signal
p puintptr // attached p for executing go code (nil if not executing go code)
nextp puintptr
oldp puintptr // the p that was attached before executing a syscall
id int64
spinning bool // m is out of work and is actively looking for work

...
};

go

13/19



The P struct

type p struct {
id int32

status uint32 // one of pidle/prunning/...
m muintptr // back-link to associated m (nil if idle)
runqhead uint32
runqtail uint32
runq [256]guintptr
// runnext, if non-nil, is a runnable G that was ready'd by
// the current G and should be run next instead of what's in
// runq if there's time remaining in the running G's time
// slice. It will inherit the time left in the current time
// slice ...
runnext guintptr

...
};

14/19



Maybe with a drawing ?

15/19



Why would we separe M from G?

The idea is that when a M (a kernel thread) is blocked (on a syscall for exemple), the go scheduler can take its runqueue (its P) and give
it to an other M.

16/19



What happens when blocking

17/19



Questions ?

Questions ?

18/19



Lolwhat

— author: LSE title: Presentation …

19/19


