
Nicolas Manichon
nicolas.manichon@lse.epita.fr

Tree differencing for code copy detection

Overview
● The project

● The challenges

● Existing tools

● How it works

The project

Code copy detection can be used in security and cheating detection.

I wanted to learn about Clang/LLVM.

The challenges: Representation
I want to work at the AST level (and I want a generic AST!)

The challenges: Scaling

Cheating detection scales very fast: 400 submissions of 10 files each.

The challenges: Robustness
Cheaters aren’t very smart.

But they can change variable names.

The challenges: Output
I want to produce usable output.

I need location info, file names...

JSON output, and a web interface.

Existing tools: jPlag

Specialized in plagiarism detection.

Implements an ANTLR parser for every language it supports.

Supports Java, C#, C, C++, Scheme.

Web interface.

Existing tools: clang-diff

LibTooling based program.

Only supports the languages supported by Clang (C, C++, ObjC).

Only works with 2 files at a time.

No consumable output, but a simple web interface.

How it works: The gumtree algorithm
“Fine-grained and Accurate Source Code Differencing” by Jean-Rémy Falleri, etc.

Used by jPlag, clang-diff, and me!

Pseudo code in the paper, and a reference implementation on Github.

How it works: The gumtree algorithm
Two phases, top down and bottom up.

We first go down the tree, matching greedily.

And we then go up the tree, matching parents of matched nodes.

O(N²)

How it (doesn’t) work: The gumtree algorithm

How it works: clang-sexpression
A LibTooling based program.

Runs as a syntax action over the files passed as parameters, and outputs
s-expressions and location info.

S-expressions are a generic way to represent trees, and are easy to parse.

(Salut (je suis) "Nicolas?")
I wrote my own “visitors”, that gave me more control over the traversal.

#include <stdio.h>

int main(int argc, char *argv[])
{
 for (int i = 0; i < 10; i++)
 printf("%d\n", i);
}

(TranslationUnit
 ("for.c")
 (Function
 (main)
 ("int (int, char **)")
 (FunctionParameters
 (ParmVarDecl
 (argc)
 ("int"))
 (ParmVarDecl
 (argv)
 ("char **")))
 (CompoundStmt
 (ForStmt
 (DeclStmt
 (VarDecl
 (i)
 (IntegerLiteral
 (0)
 ("int"))

...

for.c:begin for.c:end
for.c:begin for.c:end
for.c:4:1 for.c:7:1
for.c:4:1 for.c:7:1
for.c:3:1 for.c:7:1
for.c:3:1 for.c:7:1
for.c:3:10 for.c:3:14
for.c:3:10 for.c:3:14
for.c:3:10 for.c:3:14
for.c:3:20 for.c:3:31
for.c:3:20 for.c:3:31
for.c:3:20 for.c:3:31
for.c:4:1 for.c:7:1
...

How it works: ast-diff
ast-diff is a tool that reads s-expressions from files, and compares them.

To compare C and C++ specifically, I wrote a tool that encapsulates
clang-sexpression and ast-diff. It uses as many CPU cores as possible.

I wrote another python script that can display the results in a web interface.

{
 "results": [
 {
 "file1": "test/for.sexp",
 "file2": "test/while.sexp",
 "similarity": 0.872727,
 "mappings": [
 ...
]
 },
 {
 "file1": "test/while.sexp",
 "file2": "test/for.sexp",
 "similarity": 0.872727,
 "mappings": [
 ...
]
 }
]
}

42sh$ ast-diff --diff test/for.sexp test/while.sexp \

test/while.sexp test/for.sexp

[
 {
 "directory1": "krendus/k-1",
 "directory2": "krendus/k-12",
 "matches": []
 },
 {
 "directory1": "krendus/k-1",
 "directory2": "krendus/k-13",
 "matches": [
 {
 "file1": {
 "path": "krendus/k-1/k/io.c.sexp",
 "directory": "krendus/k-1"
 },
 "file2": {
 "path": "krendus/k-13/k/serial.c.sexp",
 "directory": "krendus/k-13"
 },
 "similarity": "0.693671",
 "locations": [
 {
 "file1loc": "io.c:10:8 io.c:20:1",
 "file2loc": "serial.c:15:4 serial.c:25:1"
 }
]
 }
 ...

42sh$ dispatch krendus/* --jobs=42 --glob=’*.c’ \

--ex-glob=’givenfile.c’

Demo

Conclusion
I learned about LibTooling, and got a patch merged into Clang.

I had to solve a few interesting challenges.

What’s left to do:

● More options for clang-sexpression.
● A few performance optimizations.
● Handling code that does not compile.
● Support more languages.
● Learn CSS.

Questions?

ast-diff: https://github.com/balayette/ast-diff

clang-sexpression: https://github.com/balayette/clang-sexpression

Fine-grained and Accurate Source Code Differencing: https://hal.archives-ouvertes.fr/hal-01054552/document

GumtreeDiff: https://github.com/GumTreeDiff/gumtree

LibTooling: https://clang.llvm.org/docs/LibTooling.html

https://github.com/balayette/ast-diff
https://github.com/balayette/clang-sexpression
https://hal.archives-ouvertes.fr/hal-01054552/document
https://github.com/GumTreeDiff/gumtree
https://clang.llvm.org/docs/LibTooling.html

