
From execution traces to binary reconstruction:
A tale of CFGs and LLVM IR

Gabriel Duque

LSE - EPITA

gabriel.duque@lse.epita.fr

April 9, 2019

Gabriel Duque (LSE) April 9, 2019 1 / 20



Overview

1 Susanoo
Trace capture
CFG recovery
Function detection

2 MCSema
General Flow
Interface
The Remill library

Gabriel Duque (LSE) April 9, 2019 2 / 20



Introduction

Obtaining execution traces

Analyzing the flow of the binary

Dumping the CFG in MCSema’s protobuf format

Lifting the CFG to LLVM IR

Optimizing out the noise

Analyzing IR or regenerating an executable file

Gabriel Duque (LSE) April 9, 2019 3 / 20



Why use execution traces?

We want to work on obfuscated files

Simplify voluntarily complicated code

Only the code that is really executed

Avoid the hassle of indirect jumps

Gabriel Duque (LSE) April 9, 2019 4 / 20



Hacky method

Gabriel Duque (LSE) April 9, 2019 5 / 20



Using ptrace

ptrace exposes an interface for observing and controlling the execution of
another process:

PTRACE GETREGS: get the value of %rip

PTRACE PEEKTEXT: get bytes at %rip

PTRACE SINGLESTEP: single step to next instruction

Gabriel Duque (LSE) April 9, 2019 6 / 20



Instruction disassembly

Gabriel Duque (LSE) April 9, 2019 7 / 20



Linear CFG

The linear basic blocks detected, one after another.

Gabriel Duque (LSE) April 9, 2019 8 / 20



Linear CFG

There are many duplicate blocks.

Gabriel Duque (LSE) April 9, 2019 9 / 20



Final CFG

Gabriel Duque (LSE) April 9, 2019 10 / 20



Function detection (1)

Disassembling with capstone

Analyzing the flow of the
binary

Generating the CFG

Gabriel Duque (LSE) April 9, 2019 11 / 20



Function detection (2)

Ignoring the call edges

Basic blocks connected
through intraprocedural
edges

Detecting the basic block
clusters

Gabriel Duque (LSE) April 9, 2019 12 / 20



Function detection (3)

Reintroducing the call edges

Following flow until
complete block is formed

Gabriel Duque (LSE) April 9, 2019 13 / 20



The life of a program

Dump CFG in wanted protobuf format

Use MCSema to get some LLVM bytecode with mcsema-lift

Get LLVM assembly language representation with llvm-dis

Optimize this with opt

Rebuild an executable or analyze the optimized IR

Gabriel Duque (LSE) April 9, 2019 14 / 20



How CFGs are lifted

Declare the lifted functions

Add segment information to handle cross-references

Lift instruction blocks

Handle exports if any

Generate init and fini code

Optimize to remove function calls at each instruction

Gabriel Duque (LSE) April 9, 2019 15 / 20



Lifting Instructions (1)

First we decode the instruction into a higher level Instruction structure.

Gabriel Duque (LSE) April 9, 2019 16 / 20



Lifting Instructions (2)

Once the block has been lifted it looks like this:

Gabriel Duque (LSE) April 9, 2019 17 / 20



Rebuilding an executable file

An executable file can then be regenerated using remill’s custom build of
clang and mcsema’s runtime static library libmcsema rt64.

Gabriel Duque (LSE) April 9, 2019 18 / 20



Conclusion

Better traces

Memory mappings

MCSema is a hassle to build

Ignoring libraries

The process is hard to automate

Will it be worth it? Currently testing on a Brainfuck interpreter

Gabriel Duque (LSE) April 9, 2019 19 / 20



Links

https://bitbucket.org/vusec/nucleus
https://github.com/trailofbits/mcsema

https://github.com/trailofbits/remill

Gabriel Duque (LSE) April 9, 2019 20 / 20

https://bitbucket.org/vusec/nucleus
https://github.com/trailofbits/mcsema
https://github.com/trailofbits/remill

	Susanoo
	Trace capture
	CFG recovery
	Function detection

	MCSema
	General Flow
	Interface
	The Remill library


