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Background

Minerva is a 32-bit RISC-V soft CPU

It is described in plain Python using nMigen

FPGA-friendly

Designed for reasonable performance in embedded use cases

This talk will discuss our approach to improve our current biggest performance
bottleneck: memory access latency.
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Memory access latency

e Memory accesses must stall the CPU
pipeline until completion.

e Direct accesses to FPGA BRAM take 1

clock cycle, but are size constrained.
o  XC7A35T has ~1.8M of BRAM

e Standard Wishbone transactions take 2 ’ A ’ Y :

_ f.stall
cycles (+1 to register).
o  throughput = 3c, latency = 18¢c

f.source.pc

f.source.instruction insn0 X insn1 X
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Memory as a hierarchy
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Step 1: basic cache design



Goal: exploiting the memory hierarchy

e Provide the illusion of a large and fast memory

e Temporal locality:
o Ifanitem is referenced, it will tend to be referenced again soon.

e Spatial locality:

o If anitem is referenced, nearby items will tend to be referenced again soon.



Accessing a cache
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Multiple words in a line

Add
ress Index Valid Tag Data
| Tag | Index | Word off. | Byte off. |

31 3 1 0 0
1
2
3
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Cache control FSM
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Cache control FSM: Flush

flushreq

Flush the cache.
This state is entered on reset.

e Stall the pipeline
e \Walk over each line to clear the
valid bit
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Cache control FSM: Check

Check for cache misses.

e In case of a miss, send a refill
request and go to “Refill”.

e In case of a flush request, go to
“Flush”.
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Cache control FSM: Reéfill

Operate cache refills.

Stall the pipeline.

Wait for data from memory
Set data, tag and valid bits
Resume execution
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Handling write accesses

e \Write-through
o Always write data to both memory and cache
o Cost-effective when paired with a write buffer
o Simple but slow

e \Write-back
o  Only write data to cache. Memory is updated on refills

o Cache contents are not consistent with memory
o Faster, but more complex
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Step 2: Optimizations



Improving cache performance

Average memory access time:

Hit latency + miss rate * miss penalty

Two strategies:

e Reduce miss rate
e Mitigate miss penalties
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Associativity

Associativity is the number of locations where a cache line can be placed.

e Direct-mapped
o Aline can be placed in exactly one location.

e nN-way associative
o Aline can be placed in n locations.

e Fully associative
o Aline can be placed in any location.
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Example: 2-way associativity

Address

| Tag | Index | Byte off. |
31 1 0
Index V Tag Data Tag Dat:
0
1
2
3
Tt ? ? I
I !
(= §=)
q4 1 l Y
Hit Data
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Refill policy

In a n-way associative cache, n lines can match a given index.
In case of a refill, which line should we choose to replace ?
Multiple choices:

e pseudo-LRU (Least Recently Used)
e MRU

e Pseudo-random

o

In a 2-way associative cache, Round-Robin is equivalent to LRU.
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Early restart

e Stall the pipeline

e Wait for the requested word

e Un-stall the pipeline but continue
refilling

What happens if we miss again ?
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Early restart

e Stall the pipeline

e Wait for the requested word

e Un-stall the pipeline but continue
refilling

What happens if we miss again ?

e Stall the pipeline again
e Wait for the requested word
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Critical Word First

e \We start the refill burst with the

address of the requested word first.

e Wishbone incremental bursts can
wrap around the address’ LSB.

e Linesof4, 8 or 16 words are
supported.
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Conclusion

In case of L1 hit:

O

In case of L1 miss, assuming L2 hits:

O

O

1 cycle read latency

2 cycle miss penalty
N+1 cycles for a complete refill (N is
number of words per line)

Lots of tuning knobs:

O

O

O

Words per line
Number of lines
Associativity (1 or 2 ways)
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Demo!
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Thanks |

Code: https://github.com/lambdaconcept/minerva
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https://github.com/lambdaconcept/minerva

