
Trying to design a simple yet
efficient L1 cache

Jean-François Nguyen

1

Background
● Minerva is a 32-bit RISC-V soft CPU
● It is described in plain Python using nMigen
● FPGA-friendly
● Designed for reasonable performance in embedded use cases

This talk will discuss our approach to improve our current biggest performance
bottleneck: memory access latency.

2

Minerva

3

MiSoC/LiteX

CPU

L2$SDRAM

ROM

SRAM

PCIe

UART

ETH

...

CSR bus

I-bus

D-bus

Wishbone

4

Memory access latency
● Memory accesses must stall the CPU

pipeline until completion.

● Direct accesses to FPGA BRAM take 1
clock cycle, but are size constrained.

○ XC7A35T has ~1.8M of BRAM

● Standard Wishbone transactions take 2
cycles (+1 to register).

○ throughput = 3c, latency = 18c

5

Memory as a hierarchy

SDRAM ~25c

L2 3c

HDD +∞

...

Cost/bit

Access latency

1c ?

6

Step 1: basic cache design

7

Goal: exploiting the memory hierarchy
● Provide the illusion of a large and fast memory

● Temporal locality:
○ If an item is referenced, it will tend to be referenced again soon.

● Spatial locality:
○ If an item is referenced, nearby items will tend to be referenced again soon.

8

Accessing a cache

Tag Index Byte offset
 Index Valid Tag Data

0
1
2
3

…

253
254
255

Address

31 1 0

=
Hit Data

9

Multiple words in a line

Tag Index Byte off.
 Index Valid Tag Data

0
1
2
3

…

Address

31 3 1 0

=
Hit

Data

Word off.

10

Cache control FSM

Flush Refill

Check

11

Cache control FSM: Flush
Flush the cache.
This state is entered on reset.

● Stall the pipeline
● Walk over each line to clear the

valid bit

Flush Refill

Check

flushreq

12

Cache control FSM: Check
Check for cache misses.

● In case of a miss, send a refill
request and go to “Refill”.

● In case of a flush request, go to
“Flush”.

Flush Refill

Check
~hit

flushreq

13

Cache control FSM: Refill
Operate cache refills.

● Stall the pipeline.
● Wait for data from memory
● Set data, tag and valid bits
● Resume execution

Flush Refill

Check
~hit

flushreq

14

Handling write accesses
● Write-through

○ Always write data to both memory and cache
○ Cost-effective when paired with a write buffer
○ Simple but slow

● Write-back
○ Only write data to cache. Memory is updated on refills
○ Cache contents are not consistent with memory
○ Faster, but more complex

15

Step 2: Optimizations

16

Improving cache performance
Average memory access time:

Hit latency + miss rate * miss penalty

Two strategies:

● Reduce miss rate
● Mitigate miss penalties

17

Associativity
Associativity is the number of locations where a cache line can be placed.

● Direct-mapped
○ A line can be placed in exactly one location.

● n-way associative
○ A line can be placed in n locations.

● Fully associative
○ A line can be placed in any location.

18

Example: 2-way associativity
Tag Index Byte off.

 Index V Tag Data V Tag Data

0
1
2
3

…

Address

31 1 0

= =

Hit Data 19

Refill policy
In a n-way associative cache, n lines can match a given index.
In case of a refill, which line should we choose to replace ?
Multiple choices:

● pseudo-LRU (Least Recently Used)
● MRU
● Pseudo-random
● ...

In a 2-way associative cache, Round-Robin is equivalent to LRU.

20

Early restart
● Stall the pipeline
● Wait for the requested word
● Un-stall the pipeline but continue

refilling

What happens if we miss again ?

Flush Refill

Check
~hit

flushreq

21

Early restart
● Stall the pipeline
● Wait for the requested word
● Un-stall the pipeline but continue

refilling

What happens if we miss again ?

● Stall the pipeline again
● Wait for the requested word

Flush Refill

Check
~hit

flushreq

22

Critical Word First
● We start the refill burst with the

address of the requested word first.
● Wishbone incremental bursts can

wrap around the address’ LSB.
● Lines of 4, 8 or 16 words are

supported.

23

Conclusion
● In case of L1 hit:

○ 1 cycle read latency

● In case of L1 miss, assuming L2 hits:
○ 2 cycle miss penalty
○ N+1 cycles for a complete refill (N is

number of words per line)

● Lots of tuning knobs:
○ Words per line
○ Number of lines
○ Associativity (1 or 2 ways)

SDRAM ~25c

L2 3c

HDD +∞

...

Cost/bit

Access latency

1cL1

24

Demo!

25

Thanks !

Code: https://github.com/lambdaconcept/minerva

26

https://github.com/lambdaconcept/minerva

