Trying to design a simple yet
efficient L1 cache

Jean-Francois Nguyen

(B Lambaaconcept

Background

Minerva is a 32-bit RISC-V soft CPU

It is described in plain Python using nMigen

FPGA-friendly

Designed for reasonable performance in embedded use cases

This talk will discuss our approach to improve our current biggest performance
bottleneck: memory access latency.

Instruction Bus

Minerva 0

A
PC
.
.............. Instruction Cache D N
F

— : =

“ Branch Predictor ‘ | Instruction Decoder H Register File ‘

g °
............. ' I

1 ! 1 o

| Adder ‘ | Logical | P
— — — § X

= Shifter L g’
Data Cache I * ' TS g

x

1 |
| l M
Data bus

____________ , | ——1 | | .

MiSoC/LiteX

I-bus

|

D-bus

|

Wishbone
UART
CSR bus
PCle K >
ETH
ROM (>
SRAM)
SDRAM K= 12§ K>

CPU

Memory access latency

e Memory accesses must stall the CPU
pipeline until completion.

e Direct accesses to FPGA BRAM take 1

clock cycle, but are size constrained.
o XC7A35T has ~1.8M of BRAM

e Standard Wishbone transactions take 2 ’ A ’ Y :

_ f.stall
cycles (+1 to register).
o throughput = 3c, latency = 18¢c

f.source.pc

f.source.instruction insn0 X insn1 X

f.source.valid

Memory as a hierarchy

Cost/bit

| <+ 1c?
L2

3c
/ SDRAM \~25¢

/[wm

Access latency

Step 1: basic cache design

Goal: exploiting the memory hierarchy

e Provide the illusion of a large and fast memory

e Temporal locality:
o Ifanitem is referenced, it will tend to be referenced again soon.

e Spatial locality:

o If anitem is referenced, nearby items will tend to be referenced again soon.

Accessing a cache

Address

Tag

Index

| Byte offset |

31

1

0

Index Valid

Tag

Data

0

1
2
3

253

254

255

Hit

Y
Data

Multiple words in a line

Add
ress Index Valid Tag Data
| Tag | Index | Word off. | Byte off. |

31 3 1 0 0
1
2
3

® ® ® ®

~
/W Data
Hit

Cache control FSM

11

Cache control FSM: Flush

flushreq

Flush the cache.
This state is entered on reset.

e Stall the pipeline
e \Walk over each line to clear the
valid bit

12

Cache control FSM: Check

Check for cache misses.

e In case of a miss, send a refill
request and go to “Refill”.

e In case of a flush request, go to
“Flush”.

13

Cache control FSM: Reéfill

Operate cache refills.

Stall the pipeline.

Wait for data from memory
Set data, tag and valid bits
Resume execution

14

Handling write accesses

e \Write-through
o Always write data to both memory and cache
o Cost-effective when paired with a write buffer
o Simple but slow

e \Write-back
o Only write data to cache. Memory is updated on refills

o Cache contents are not consistent with memory
o Faster, but more complex

15

Step 2: Optimizations

Improving cache performance

Average memory access time:

Hit latency + miss rate * miss penalty

Two strategies:

e Reduce miss rate
e Mitigate miss penalties

17

Associativity

Associativity is the number of locations where a cache line can be placed.

e Direct-mapped
o Aline can be placed in exactly one location.

e nN-way associative
o Aline can be placed in n locations.

e Fully associative
o Aline can be placed in any location.

18

Example: 2-way associativity

Address

| Tag | Index | Byte off. |
31 1 0
Index V Tag Data Tag Dat:
0
1
2
3
Tt ? ? I
I !
(= §=)
q4 1 l Y
Hit Data

19

Refill policy

In a n-way associative cache, n lines can match a given index.
In case of a refill, which line should we choose to replace ?
Multiple choices:

e pseudo-LRU (Least Recently Used)
e MRU

e Pseudo-random

o

In a 2-way associative cache, Round-Robin is equivalent to LRU.

20

Early restart

e Stall the pipeline

e Wait for the requested word

e Un-stall the pipeline but continue
refilling

What happens if we miss again ?

21

Early restart

e Stall the pipeline

e Wait for the requested word

e Un-stall the pipeline but continue
refilling

What happens if we miss again ?

e Stall the pipeline again
e Wait for the requested word

22

Critical Word First

e \We start the refill burst with the

address of the requested word first.

e Wishbone incremental bursts can
wrap around the address’ LSB.

e Linesof4, 8 or 16 words are
supported.

ibus

icache

alisEaiaRniasRaiaRaEaRaRal

o - [(.
stb : / ! _

cti INCREMENT XEND

bte] WRAP_8

adr R TN N e O
dat r EiZXaXchXdXeXfXth

ack .

:/ L

s1_address 3§X 4 §X5X42X43X44X S G I
Z 3 a5 aYaefalY X X

s2_address

s2_re 3

miss :/ \
refill_request / \
stall_request / \
s2_dat r X X a X BEEEX X X X X X X

23

Conclusion

In case of L1 hit:

O

In case of L1 miss, assuming L2 hits:

O

O

1 cycle read latency

2 cycle miss penalty
N+1 cycles for a complete refill (N is
number of words per line)

Lots of tuning knobs:

O

O

O

Words per line
Number of lines
Associativity (1 or 2 ways)

Cost/bit

|

L1 1c

L2 3c
/ SDRAM \~25¢

/[wm

Access latency

24

Demo!

25

Thanks |

Code: https://github.com/lambdaconcept/minerva

26

https://github.com/lambdaconcept/minerva

