
Windows Hello World

Thomas Bitzberger
bitz@lse.epita.fr

But why ?

- Realized I actually knew nothing about Windows internals
- Every executable including the kernel is a PE
- Understanding the binary format is important, whatever OS
- Let’s begin by that !

2

What are we doing

- Let’s begin with a very simple LSE exercice : calling ‘printf()’
- But let’s not do it the ez way
- We don’t want to use the ‘printf’ symbol
- We want to find it’s address at runtime and jump there

3

Where do we start

Let’s think about what a dynamic linker basically does:

- Loading shared libraries
- Making relocations

To do it’s work, it maintains a state of the loaded binaries:

→ The Link Map

On Windows, the dynamic linking is done by the binary loader.

4

How to find the link map

We can find it using a pretty useful structure:

→ Thread Information Block

- Per-thread structure
- Accessed via %fs/%gs in 32/64 bits + an offset
- Contains a lot of informations:

- LastError
- [… lots of stuff …]
- PEB address (offset 0x60)

5

Process Environment Block
typedef struct _PEB {
 BYTE Reserved1[2];
 BYTE BeingDebugged; /* :) */
 BYTE Reserved2[1];
 PVOID Reserved3[2];
 PPEB_LDR_DATA Ldr; /* link map */
 PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
 BYTE Reserved4[104];
 PVOID Reserved5[52];
 PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine;
 BYTE Reserved6[128];
 PVOID Reserved7[1];
 ULONG SessionId;
} PEB, *PPEB;

6

Microsoft beauty

As you may have noticed, we don’t have a lot of infos about structures
exported fields.

This is the case for the PEB and many other structures we’ll need.

Fortunately, Microsoft gives us a way to access the real structures
definitions ! (That’s not MSDN).

7

Debugger to the rescue

Using WinDbg that is included in Windows SDK, we can get the
informations we want.

We can configure WinDbg to use Microsoft symbol server.

Then, using the ‘dt’ (display type) we get the real structure definition !

8

Using WinDbg

Real structure size is almost 2 Ko ! 9

Process Environment Block
void *GetPEB(void)
{

return (void *)__readgsqword(0x60);
}

Microsoft compiler has no support for 64 bits inline assembly. Yay…

We can use a set of compiler builtins that will do the job.

This is sometimes not enough (no lgdt builtin for example).

10

PEB_LDR_DATA

Ok so we have lists… but where are the loading infos ?
11

Windows is definitely intrusive

typedef struct _LIST_ENTRY {
 struct _LIST_ENTRY *Flink; /* next */
 struct _LIST_ENTRY *Blink; /* prev */
} LIST_ENTRY, *PLIST_ENTRY;

The list is also circular. This kind of list is also used in the Linux Kernel.

12

Getting loaded DLLs infos

Reading the Windows documentation about PEB_LDR_DATA:

“InMemoryOrderModuleList

The head of a doubly-linked list that contains the loaded modules for the
process. Each item in the list is a pointer to an
LDR_DATA_TABLE_ENTRY structure.”

13

LDR_DATA_TABLE_ENTRY

Using this we can access the loaded DLLs !
14

Getting the entries

1) Get the head of the loaded DLLs list (in PEB_LDR_DATA)
2) Iterate on list

a) You can retrieve the entry using classic ‘CONTAINER_OF’ macro

Ok so now we can access the DLLs, let’s see how to lookup functions !

Let’s look up the PE header format ...

15

PE Header

16

DOS Header

17

PE Header

typedef struct _IMAGE_NT_HEADERS64 {
 DWORD Signature;
 IMAGE_FILE_HEADER FileHeader;
 IMAGE_OPTIONAL_HEADER64 OptionalHeader;
} IMAGE_NT_HEADERS64, *PIMAGE_NT_HEADERS64;

OptionalHeader will lead us to exported functions.

18

Optional Header
typedef struct _IMAGE_OPTIONAL_HEADER {
 WORD Magic;
 BYTE MajorLinkerVersion;
 BYTE MinorLinkerVersion;
 DWORD SizeOfCode;
 /* … */
 IMAGE_DATA_DIRECTORY DataDirectory[MAX_ENTRIES];
} IMAGE_OPTIONAL_HEADER, *PIMAGE_OPTIONAL_HEADER;

MSDN tells us that the export table is the first DataDirectory entry.

19

Getting export table
PVOID LookupDll(PVOID DllBase, PCHAR func_name)

{

PIMAGE_DOS_HEADER dosHdr = (PIMAGE_DOS_HEADER)DllBase;

PIMAGE_NT_HEADERS64 peHdr = ((PCHAR)DllBase + dosHdr->e_lfanew);

ULONG exportAddr = eHdr->OptionalHeader.DataDirectory[0].VirtualAddress;

PIMAGE_EXPORT_DIRECTORY exportTable = ((PCHAR)DllBase + exportAddr);

/* ... */

}

20

Retrieving function address
PULONG names = (PCHAR)Dllbase + exportTable->AddressOfNames;

PULONG funcs = (PCHAR)Dllbase + exportTable->AddressOfFunctions;

for (ULONG i = 0; i < exportTable->NumberOfNames; ++i) {

PCHAR name = (PCHAR)DllBase + names[i];

if (!Strcmp(name, func_name))

return (PCHAR)DllBase + funcs[i];

21

Calling printf

We have everything we need to call ‘printf’ so let’s go !

Let’s just loop over loaded DLLs and look for ‘printf’.

So I wrote the program, tested and …

‘printf’ is not found on any loaded DLL !

I find puts, fputs, fwrite, __stdio_common_vprintf and tons of others …

BUT I WANT { ‘P’, ‘R’, ‘I’, ‘N’, ‘T’, ‘F’ } !!!

22

Where is printf

So I started investigating … and found a Microsoft Blog article:

“The Great C Runtime (CRT) Refactoring”
Windows CRT has evolved during time.

It was ‘MSVCRT.DLL’ for a long time.

Then it moved to ‘MSVCR*.DLL’ (one per MSVC version)

Starting for version 14.0 there is now ‘UCRTBASE.DLL’ + another one still
depending on MSVC version.

23

Looking for printf

‘printf’ is defined in ucrt/stdio.h:

 ‘_CRT_STDIO_INLINE __CRTDECL printf(‘

On another Microsoft Blog article about UCRT:

“The printf and scanf functions are now defined inline”

Nice ...

24

Let’s cheat
‘The msvcrt.dll is now a system component owned and built by Windows.’
from Microsoft documentation

This CRT exports the ‘printf’ function.

However, this library isn’t loaded in our address space.

At this point, this is not a problem :)

25

https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-microsoft-c-runtime-with-user-mode-drivers-and-apps

Let’s cheat

So in order to do complete our mission, we need to load ‘MSVCRT.DLL’ in
memory.

We have a function lookup mechanism in any loaded DLL …

Let’s retrieve ‘LoadLibrary’ address in KERNEL32.DLL (loaded in every
process).

As we’re here, let’s also get ‘GetProcAddress’ ...

26

Eventually winning

PVOID l = LookupDll(entry->DllBase, "LoadLibraryA");

PVOID g = LookupDll(entry->DllBase, "GetProcAddress");

PHANDLE h = ((load_library_t)l)("msvcrt.dll");

printf_t print = (printf_t)((get_proc_addr_t)g)(h, "printf");

print("Windows Hello World - LSE\n");

27

28

Questions ?

29

Thank you !

30

