
Security Workshop
HTS

LSE Team

EPITA 2018

February 3rd, 2016

1 / 40

Introduction

What is this talk about?

Presentation of some basic memory corruption bugs
Presentation of some simple protections
Writing some (really basic) exploits

Notes:

Sources of the exercises/examples at
https://www.lse.epita.fr/data/workshop-secu.tar.gz
Lots of them come from
http://www.exploit-exercises.com

2 / 40

Plan

Exploitation 101

ASM for exploitation
Shellcodes

Buffer Overflows

Stack overflow
Heap overflow

Format string
Preventions

DEP
ASLR
PIE

ROP
Going further

3 / 40

Exploitation 101

ASM for exploitation

%eip: Program counter: pointer to instruction to be
executed
%esp: Stack pointer

4 / 40

Exploitation 101 - Push

Figure: Push

5 / 40

Exploitation 101 - Pop

Figure: Pop

6 / 40

Exploitation 101 - jmp, call, ret & int 0x80

jmp XXX: %eip = XXX
call XXX:

push %eip
jmp XXX

ret: pop %eip
int $0x80: syscall

7 / 40

Shellcodes

”A shellcode is a small piece of code used as the
payload in the exploitation of a software
vulnerability.” (Wikipedia)
Called shellcode because the usual goal is to get a
shell.
In general it is the final step of exploitation.
Triggering the vulnerability allows you to ”jump” on
your shellcode.

8 / 40

Shellcode is an art

There is lots of methods used when writing shellcodes:

Nop sled
Null-free (or any other kind of restriction)
multi-staged shellcode
self-deciphering shellcode
. . .

9 / 40

Exercise steps (shellcode)

int main()

{
char input[4096];

open("flag", O_RDONLY);

read(0, input, 4096);

((func)&input)();

return 0;

}

Find a place to write the data
Read the content of the open file into a buffer
Write the content of the buffer to STDOUT
No null bytes (shellcode1)

10 / 40

Buffer overflows: Generality

Really simple principle
Possibility of writing past the bounds of a buffer
(wherever it is)
When?

Some functions trigger a BOF in ”almost” every case
(gets, strcpy, . . .)
Just bad code. . .

Two major categories (stack and heap), but virtually
anywhere

11 / 40

Stack overflows: The stack ?

A memory zone (like the heap)
Used for:

Passing arguments (calling convention dependant,
but for x86 32 it’s generally on the stack)
Local variables
Return address of the functions

12 / 40

Stack overflows: The stack ?

Figure: The stack

13 / 40

Exercise: overflow0

#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

int main(int argc, char **argv)

{
volatile int modified;

char buffer [64];

modified = 0;

gets(buffer);

if (modified != 0)

printf("you have changed %d\n", modified);

else

printf("Try again?\n");
}

14 / 40

Exercise: overflow1

#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

#include <string.h>

// gcc -m32 -o main main.c

void win()

{
printf("code flow successfully changed\n");

}

int main(int argc, char **argv)

{
char buffer[64];

gets(buffer);

}
15 / 40

Stack overflows prevention: Canary

#include <stdio.h>

// gcc -fstack-protector-all example.c

int example(void)

{
return getchar();

}

int main(void)

{
return example();

}

16 / 40

Stack overflows prevention: Canary

Figure: The stack with the canary

17 / 40

Stack overflows prevention: Canary

push %rbp

mov %rsp,%rbp

sub $0x10,%rsp ; Allocate slot

mov %fs:0x28,%rax ; Get canary

mov %rax,-0x8(%rbp) ; "Push" it.

xor %eax,%eax

callq 400460 <getchar@plt>

mov -0x8(%rbp),%rdx ; Take it back

xor %fs:0x28,%rdx ; xor with original

je 400596 <example+0x30>

callq 400450 <__stack_chk_fail@plt> ; If not equal, abort

leaveq

retq

18 / 40

Exercise steps (overflow2)

Overflow the buffer byte by byte to leak the canary
Overwrite it and the return address
Take control of the instruction flow

19 / 40

Heap overflow

The heap is just another memory zone
Used when calling malloc, new. . .
No return address to overwrite on the heap :(
The goal is to rewrite:

a pointer (hopefully leading to a write-what-where)
a function pointer (hopefully called later)
some metadata (like the malloc metadata)
a vtable pointer (C++ code only)

20 / 40

Heap overflow - Example

Figure: Clean heap

21 / 40

strcpy(i1->name, argv[1]);

Figure: Overflow

22 / 40

Write-What-Where

write-what-where: we can write what we want where
we want (almost always equivalent to success)
what can we possibly want to rewrite?

A stack return? Good if we don’t have ASLR, but what
if we have some?
A function pointer? Sure if we have one, and know
where it is
The GOT? Almost always one, not affected by ASLR
(but if we have PIE we are doomed)

23 / 40

PLT & GOT

Figure: PLT/GOT

24 / 40

PLT & GOT

Figure: PLT/GOT

25 / 40

Exercise step (heap0)

Find exit’s PLT entry
Rewrite the second allocation metadata
Write over exit’s PLT entry with winner address

26 / 40

Format string

Remember that va arg doesn’t know the function’s
arity? That’s quite sad. . .
What can we do with it?

We can obviously leak data. . .
What about %n? The number of characters written so
far is stored into the integer specified by the int* (or
variant) pointer argument. No argument is converted.

27 / 40

%n

int i;

printf("%s%n", "Hello", &i);

i == 5
We can write to the address of a given argument (&i)
the number we want. We just need to control the
address to have a write-what-where.
At one point the arguments are taken from the stack
(va arg). If the buffer was once on the stack: we can
take the content of the buffer as argument.
Lets get the address we want in the buffer and take
this one as argument for the %n: we have a
write-what-where!

28 / 40

Some tips for the format

%[num]$[option] takes the arg. num for option

%2$x: draws the hex value of the second arg.

%.[num][option] draws at least num byte(s) (actually
depends on the given option)

%.200x: draws the first arg with at least 200 chars

%n writes an int at the address
%hn writes a short at the address
%hhn writes a byte at the address

29 / 40

Example

int main()

{
// 0xcafe = 51966

long i = 0x22222222;

printf("\i = 0x%x\n", i);

printf("%.51966x%1$hn", &i);

printf("\ni = 0x%x\n", i);

}

$./format

i = 0x22222222

...

i = 0x2222cafe

30 / 40

Exercise steps (format0)

Find the return address on the stack
Overwrite it with hello’s address

31 / 40

Preventions: DEP

Data Execution Prevention (NX, WˆX, . . .)
Basic idea is Write XOR Execute

You can’t execute code on your stack, heap. . .

32 / 40

Preventions: ASLR

Address space layout randomization
If not enabled, everything is always at the same
address (the stack, the heap, the libraries. . .)
When enabled the base address of the stack, the
heap and the libraries are randomized.
But the address of the loaded binary is not.
echo 1 > /proc/sys/kernel/randomize va space

33 / 40

Preventions: PIE

Position-independent executable
Like ASLR but with the base of the binary randomized.
echo 2 > /proc/sys/kernel/randomize va space

-fpie for gcc, -pie for ld

34 / 40

Bypassing ASLR & PIE

We need an address leak

Then, we can calculate the position of the base
address

offset = ref leaked addr - ref base address

base = leaked addr - offset

Once we have the base address, ASLR is down.
Really simple once we have a leak. . .

35 / 40

ROP

Return Oriented Programming.
The idea: Rewrite the whole stack and use returns to
call the parts of code we want.
With DEP, we can’t inject our own code and get it
executed. So we just reuse code from the binary.
No good technique (yet) to prevent ROP, but quite
painful to write.
In x86, ROP is simpler because the calling convention
uses the stack while it uses registers in x64.

36 / 40

Gadgets

To ROP, we need sequences of instructions ending
with ret (or something like call *%eax).
This kind of sequence is called a gadget
A typical gadget, is something like pop [REG]; ret

Some tools for finding gadgets already exist:

ropmount by Hakril
ROPgadget by JonathanSalwan
rp by 0vercl0ck

37 / 40

Exercise steps (rop)

1 exercises, 3 versions
Modification of a DEFCON Quals 2013 exercise.
The goal is to call system from libc. . .
Probably an infinity of solutions. . .
Easy: x86 - no stack protection, no ASLR
Half: x64 - stack-protection, no ASLR
Hard: x64 - stack-protection, PIE
Toggling ASLR/PIE:

x=0: no ASLR - noPIE
x=1: ASLR - no PIE
x=2: ASLR - PIE

echo $x > /proc/sys/kernel/randomize va space

38 / 40

Going further

Other vulnerability types (use-after-free, off-by-one,
heap spraying)
Vulnerability discovery (fuzzer, static analysis. . .)
Metadata corruptions
Sandbox escape
Kernel exploitation
Windows exploitation

39 / 40

Links

ctf.lse.epita.fr
exploit-exercises.com/
https://www.root-me.org
crackme.de
reddit.com/r/netsec
oss-sec
bugtrack
fulldisclosure
phrack.org

40 / 40

