Security Workshop
HTS

LSE Team

EPITA 2018

February 3rd, 2016

Infroduction

What is this talk about?

m Presentation of some basic memory corruption bugs
m Presentation of some simple protections
m Writing some (really basic) exploits

m Sources of the exercises/examples at
https://www.lse.epita.fr/data/workshop-secu.tar.gz

m Lofs of them come from
http://www.exploit-exercises.com

m Exploitation 101

m ASM for exploitation
m Shellcodes

m Buffer Overflows

m Stack overflow
m Heap overflow

m Format string
m Preventions

m DEP
m ASLR
m PIE

m ROP
m Going further

Exploitation 101

m ASM for exploitation

m ‘eip: Program counter: pointer to instruction fo be
executed
B ‘esp: Stack pointer

Exploitation 101 - Push

Eax = Eax =
Oxdeadbabe Oxdeadbabe

Esp
Oxdeadbabe

Esp

push
eax
Stack —_— Stack

Figure: Push

Exploitation 101 - Pop

Esp

Eax = Eax =
Oxdeadbabe Oxcafecafe
Oxcafecafe
Esp
pop eax
Stack Stack
Figure: Pop

Exploitation 101 - jmp, call, ret & int 0x80

B jmp XXX: %eip = XXX
m call XXX:
B push %eip
B jmp XXX
m ret: pop %eip
m int SOx80: syscall

Shellcodes

m “Ashellcode is a small piece of code used as the
payload in the exploitation of a software
vulnerability.” (Wikipedia)

m Called shellcode because the usual goal is fo get a
shell.

m In general it is the final step of exploitation.

m Triggering the vulnerability allows you to “jump” on
your shellcode.

Shellcode is an art

There is lots of methods used when writing shellcodes:

m Nop sled

m Null-free (or any other kind of restriction)
m multi-staged shellcode

m self-deciphering shellcode

m...

Exercise steps (shellcode)

int main()

{
char input[4096];
open("flag", O_RDONLY);
read(0, input, 4096);
((func)&input) () ;
return O;

}

m Find a place to write the data

m Read the content of the open file intfo a buffer
m Write the content of the buffer to STDOUT

m No null bytes (shellcodeT)

Buffer overflows: Generality

m Really simple principle

m Possibility of writing past the bounds of a buffer
(wherever it is)

m When?

m Some functions trigger a BOF in “almost” every case

(gets, strcpy, ...)
m Just bad code...

m Two major categories (stack and heap), but virtually
anywhere

Stack overflows: The stack ?

m A memory zone (like the heap)
m Used for:

m Passing arguments (calling convention dependant,
but for x86_32 it’s generally on the stack)

m Local variables

m Refurn address of the functions

Stack overflows: The stack ?

Parent frame

return address

stack frame pointer

Buffer

Figure: The stack

Exercise: overflowO

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int main(int argc, char **argv)
{
volatile int modified;
char buffer [64];
modified = O;
gets (buffer) ;
if (modified != 0)
printf ("you have changed %d\n", modified);
else
printf("Try again?\n");

Exercise: overflow 1

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
// gcc —-m32 -o main main.c

void win()

{
¥

printf("code flow successfully changed\n");

int main(int argc, char **argv)

{

char buffer[64];
gets(buffer);

Stack overflows prevention: Canary

#include <stdio.h>
// gcc —fstack-protector-all example.c
int example(void)

{
}

return getchar();

int main(void)

{
}

return example();

Stack overflows prevention: Canary

Parent frame

return address

stack frame pointer

canary

Buffer

Figure: The stack with the canary

Stack overflows prevention: Canary

push Y%rbp
mov %hrsp, %rbp

sub $0x10,%rsp

mov %fs:0x28,%rax

mov %hrax,-0x8(%rbp)

x0T %eax, %heax

callqg 400460 <getchar@plt>
mov -0x8 (%rbp) , %rdx

xor %fs:0x28, %rdx

je 400596 <example+0x30>
callg 400450 <__stack_chk_fail@plt>
leaveq

retq

)

Allocate slot
Get canary
"Push" 1t.

Take 2t back
zor with original

; If not equal, abort

Exercise steps (overflow?2)

m Overflow the buffer byte by byte to leak the canary
m Overwrite it and the return address
m Take control of the instruction flow

Heap overflow

m The heqp is just another memory zone

m Used when calling malloc, new. ..

m No return address to overwrite on the heap :(
m The goal is fo rewrite:

m a pointer (hopefully leading to a write-what-where)
m a function pointer (hopefully called later)

m some metadata (like the malloc metadata)

m o vtable pointer (C++ code only)

20/40

Heap overflow - Example

‘metadata‘ prio ‘ name H

H metada}f{ str ‘ ‘

e

‘ metad%t? str ‘ ‘

‘ metadata ‘ prio ‘ nameJ--:>

Figure: Clean heap

strcpy(ilT->name, argv(1));

H metadata‘ prio ‘ name

‘ metada}}{ ‘

str ‘ ‘metadata‘ prio ‘ nam#b

-

H metam

str ‘ ‘

Figure: Overflow

Write-What-Where

m write-what-where: we can write what we want where
we want (almost always equivalent to success)
m what can we possibly want to rewrite?

m A stack return? Good if we don’t have ASLR, but what
if we have some?
m A function pointer? Sure if we have one, and know

where it is
m The GOT? Almost always one, not affected by ASLR
(but if we have PIE we are doomed)

23/40

PLT & GOT

Code:

call func@PLT

GOT:
PLT: GOT [n]:
PLT[O] : P < addr>
call resolver

PLT [n] : -
jmp *GOT[n]
prepare re:‘::.\l'..'erT

— jmp FLT[0]

Figure: PLT/GOT

Code:

call func@ELT

PLT:

PLT[0] :
call resolver

|-:-'-|'[rl]: ol

PLT & GOT

GOT:

GOT [n] =

Jmp *GOT [n]

prepare resolver
jmp ELT[O]

P <addr>

Code:

func: 44—

Figure: PLT/GOT

Exercise step (heapO)

B Find exit’s PLT entry
m Rewrite the second allocation metadata
m Write over exit’s PLT entry with winner address

Format string

B Remember that va_arg doesn’t know the function’s
arity? That’s quite sad. ..
m What can we do with it?

m We can obviously leak data. ..

m What about %n? The number of characters written so
far is stored into the integer specified by the intx* (or
variant) pointer argument. No argument is converted.

27140

int 1i;
printf ("%s%n", "Hello", &i);

mi==

m We can write to the address of a given argument (&i)
the number we want. We just need to control the
address to have a write-what-where.

m At one point the arguments are taken from the stack
(va_arg). If the buffer was once on the stack: we can
take the content of the buffer as argument.

m Lefs get the address we want in the buffer and take
this one as argument for the %n: we have a
write-what-wherel

Some tips for the format

B %(num)S(option) takes the arg. num for option
m %2$x: draws the hex value of the second arg.

m %.(num)(option) draws at least num byte(s) (actually
depends on the given opftion)

m %.200x: draws the first arg with at least 200 chars
m %n writes an int at the address

m %hn writes a short at the address
B ’hhn writes a byte at the address

int main()

{
// Ozcafe = 51966
long i = 0x22222222;
printf("\i = OxJx\n", 1i);
printf("%.51966x%l$hn", &i);
printf("\ni = OxJx\n", 1i);

}

$./format

i = 0x22222222

i = 0x2222cafe

30/40

Exercise steps (format0)

m Find the return address on the stack
m Overwrite it with hello’s address

Preventions: DEP

m Data Execution Prevention (NX, W™X, ...)
m Baosic idedis Write XOR Execute
m You can’t execute code on your stack, heap. ..

Preventions: ASLR

m Address space layout randomization

m If not enabled, everything is always at the same
address (the stack, the heap, the libraries. . .)

m When enabled the base address of the stack, the
heap and the libraries are randomized.

m But the address of the loaded binary is not.

B echo 1 > /proc/sys/kernel/randomize_va_space

Preventions: PIE

m Position-independent executable

m Like ASLR but with the base of the binary randomized.
B echo 2 > /proc/sys/kernel/randomize_va_space

m -fpie for gcc, -pie for Id

Bypassing ASLR & PIE

m We need an address leak
m Then, we can calculate the position of the base
address

B offset = ref_leaked_addr - ref_base_address
B base = leaked_addr - offset

m Once we have the base address, ASLR is down.
Redally simple once we have a leak. . .

ROP

m Return Oriented Programming.

m The idea: Rewrite the whole stack and use returns to
call the parts of code we want,

m With DEP we can’t inject our own code and get it
executed. So we just reuse code from the binary.

m No good technigue (yet) to prevent ROPR but quite
painful to write.

m In x86, ROP is simpler because the calling convention
uses the stack while it uses registers in x64.

Gadgets

m To ROPR we need sequences of instructions ending
with ret (or something like call *%eax).
m This kind of sequence is called a gadget
m A typical gadget, is something like pop [REG]; ret
m Some tools for finding gadgets already exist:
m ropmount by Hakril

m ROPgadget by JonathanSalwan
m rp by OverclOck

Exercise steps (rop)

m 1 exercises, 3 versions
m Modification of a DEFCON Quals 2013 exercise.
m The goal is to call system from libc. ..
m Probably an infinity of solutions. . .
m Easy: x86 - no stack protection, no ASLR
m Half: x64 - stack-protection, no ASLR
m Hard: x64 - stack-protection, PIE
m Toggling ASLR/PIE:
m x=0: no ASLR - noPIE

m x=1: ASLR - no PIE
m x=2: ASLR - PIE

B echo $x > /proc/sys/kernel/randomize_va_space

Going further

m Other vulnerability types (use-after-free, off-by-one,
heap spraying)

m Vulnerability discovery (fuzzer, static analysis. . .)

m Metadata corruptions

m Sandbox escape

m Kernel exploitation

m Windows exploitation

cftf.lse.epita.fr
exploit-exercises.com/
https://www.root-me.org
crackme.de
reddit.com/r/netsec
0ss-sec

bugtrack

fulldisclosure

phrack.org

