WHEN GDB IS NOT
ENOUGH

PAUL SEMEL
KEVIN TAVUKCIYAN



TALKING ABOUT DWARF




TALKING ABOUT DWARF

DEBUGGING WITH ATTRIBUTE RECORD FORMATS



WHAT IS DWARF?




WHAT IS DWARF?

e Format used to store debug informations
e Generated by the compiler

e Sections in the binary format



HOW DOES IT WORK?



INFO

e Contains all information on our types
e |[nformations are sorted by compilation units.

e Info entry are called DIE (Dwarf Info Entry).



COMPILATION UNIT

e |nteresting projects have more than one source code
file and are compiled separately and linked together

e They are called Compilation Unit in DWARF

e Each DIE are different and separated by compile
units



DIE (SOUNDS APPEALING ALREADY HUH?)

e Basic description entry in DWAR

e Has atag whic

N precises what it d

e Candescribe ¢

escribes

ata or functions/executable code



ABBREV

e Table of abbreviation
e Used to compress data inside the section

e Contains info on the content of the DIE



APPLICATIONS



GNU BINUTILS

e Multiple DWARF4 parsing implementation
e Too deeply merged in the rest of the projects

e 10k+ LOC in objdump / 25k+ LOC in gdb



OUR PROJECT



DWARF PRETTYPRINTER

o Get structure members.

e Print structure content.

o 15000 -Deablwith-+Statmant



WHAT WAS THE POINT OF THE PROJECT?

e Create alib that can print the structure when given a
pointer to it.

e Useful for debug when gdb is too much.

e Asfast and as lightweight as possible.



TECHNIQUES USED



DWARF FORMAT PARSING

e DWAREF format is against us.
* \We needed a technique to avoid loading the whole
DWAREF tree in memory



Abbrev number

Field content

Dwarf Info Entry

Field information




WHAT'S WRONG WITH THIS ?

e We need to parse the whole format until we find a
DIE.
e Thesize of atag can be variable.



struct example

uintl6é t

short unsigned int




S0, HOW CAN WE OPTIMIZE THIS ?

e We need to fix the size of as most tag as we can.
e [f we encounter a structure, we keep it in memory.
e We remain where we stopped parsing the last time.



struct example

name: tab
type: unsigned
short int

name: a
type: ulé

name: a
type: uintlé_t

name: a
type: unsigned short int




VISITOR



WHAT DO WE NEED ?

e Give depth traversing control to the user.
e The user must be able to hook everywhere.
e By default depth traversing and printing functions.



HOW CAN WE DO THAT ?

e Fach node has a default depth traversing function.
e We store printing functions in a hash table.

e Basic types must have a default printing function.

e The traversingis triggered by the printing function.



NODE STRUCTURE

struct Die {
const char *name;
const char *type;
void *data;
size t len;
struct list children;
struct list sibling;
void (*next)(struct Die *, struct hash control *);

};

This is the structure given to the user



LET'S TRYIT!



THE TEST STRUCURE

typedef uintlo t ul6;

struct example {
unsigned short int a;
ulé b;

}I



struct example

name: tab
type: unsigned
short int

name: a
type: ulé

name: a
type: uintlé_t

name: a
type: unsigned short int




void *init dwarf(char *path);
int print structure content(void *address, char *name, void *di,
void* ctx);
/*
* param 1 ctx may be NULL the first time the function is calle
* param 2 : name may be NULL if no type specification
* param 3 : musn't be NULL
* param 4 : print function
* * param 1 : Current Die
* % param 2 : User data
* * param 3 : Must be sent to next() function if called
* param 5 : user data
*/
void *set context(void *ctx, const char *name, const char *type,
void (*print) (Die *, void *, void *), void *dat



void print uintl6(Die *die, void *data, void *h) {
printf("%ss %s : %d\n", die->type, die->name,
*(unsigned short int *)die->data);

}

int main(void) {
struct example t;
t.a = 1234;
t.b = 42;
void *te = init dwarf("/proc/self/exe");
void *ctx = NULL;
ctx = set context(NULL, NULL, "uintl6e t", print uintle,
NULL) ;
print structure content(&t, "example", te, ctx);



BY DEFAULT

struct example : t
short unsigned int b : 42
short unsigned int a : 1234

WITH OUR HOOK

struct example : t
uintle t b : 42
short unsigned int a : 1234



What's next?

e Recursive parsing
e Parse faster when given a compile unit.



CONCLUSION



QUESTIONS?



