
WHEN GDB IS NOT
ENOUGH

PAUL SEMEL

KEVIN TAVUKCIYAN

TALKING ABOUT DWARF

TALKING ABOUT DWARF
DEBUGGING WITH ATTRIBUTE RECORD FORMATS

WHAT IS DWARF?

WHAT IS DWARF?

Format used to store debug informations

Generated by the compiler

Sections in the binary format

HOW DOES IT WORK?

INFO

Contains all information on our types

Informations are sorted by compilation units.

Info entry are called DIE (Dwarf Info Entry).

COMPILATION UNIT

Interesting projects have more than one source code
�le and are compiled separately and linked together

They are called Compilation Unit in DWARF

Each DIE are different and separated by compile
units

DIE (SOUNDS APPEALING ALREADY HUH?)

Basic description entry in DWARF

Has a tag which precises what it describes

Can describe data or functions/executable code

ABBREV

Table of abbreviation

Used to compress data inside the section

Contains info on the content of the DIE

APPLICATIONS

GNU BINUTILS

Multiple DWARF4 parsing implementation

Too deeply merged in the rest of the projects

10k+ LOC in objdump / 25k+ LOC in gdb

OUR PROJECT

DWARF PRETTYPRINTER

Get structure members.

Print structure content.

1500 LOC : Deal with it Stallman !

WHAT WAS THE POINT OF THE PROJECT?

Create a lib that can print the structure when given a
pointer to it.

Useful for debug when gdb is too much.

As fast and as lightweight as possible.

TECHNIQUES USED

DWARF FORMAT PARSING

DWARF format is against us.
We needed a technique to avoid loading the whole
DWARF tree in memory

WHAT'S WRONG WITH THIS ?

We need to parse the whole format until we �nd a
DIE.
The size of a tag can be variable.

SO, HOW CAN WE OPTIMIZE THIS ?

We need to �x the size of as most tag as we can.
If we encounter a structure, we keep it in memory.
We remain where we stopped parsing the last time.

VISITOR

WHAT DO WE NEED ?

Give depth traversing control to the user.
The user must be able to hook everywhere.
By default depth traversing and printing functions.

HOW CAN WE DO THAT ?

Each node has a default depth traversing function.
We store printing functions in a hash table.
Basic types must have a default printing function.
The traversing is triggered by the printing function.

NODE STRUCTURE

This is the structure given to the user

struct Die {
 const char *name;
 const char *type;
 void *data;
 size_t len;
 struct list children;
 struct list sibling;
 void (*next)(struct Die *, struct hash_control *);
};

LET'S TRY IT !

THE TEST STRUCURE
typedef uint16_t u16;

struct example {
 unsigned short int a;
 u16 b;
};

void *init_dwarf(char *path);
int print_structure_content(void *address, char *name, void *di,
 void* ctx);
/*
 * param 1 : ctx may be NULL the first time the function is called
 * param 2 : name may be NULL if no type specification
 * param 3 : musn't be NULL
 * param 4 : print function
 * * param 1 : Current Die
 * * param 2 : User data
 * * param 3 : Must be sent to next() function if called
 * param 5 : user data
 */
void *set_context(void *ctx, const char *name, const char *type,
 void (*print)(Die *, void *, void *), void *data)

void print_uint16(Die *die, void *data, void *h) {
 printf("%s %s : %d\n", die->type, die->name,
 *(unsigned short int *)die->data);
}

int main(void) {
 struct example t;
 t.a = 1234;
 t.b = 42;
 void *te = init_dwarf("/proc/self/exe");
 void *ctx = NULL;
 ctx = set_context(NULL, NULL, "uint16_t", print_uint16,
 NULL);
 print_structure_content(&t, "example", te, ctx);
}

BY DEFAULT

WITH OUR HOOK

struct example : t
short unsigned int b : 42
short unsigned int a : 1234

struct example : t
uint16_t b : 42
short unsigned int a : 1234

What's next?

Recursive parsing
Parse faster when given a compile unit.

CONCLUSION

QUESTIONS?

