
1

VIRTUAL MEMORY IN STOS
Pierre 'Pimzero' Marsais

pierre.marsais@lse.epita.fr

2

WHAT DO WE WANT
Specify rights on memory
Allow private or shared mapping
m m a p (2) should be able to map anonymous and �le backed
memory
f o r k (2) implies copy on write

3

WHAT ABOUT STOS ?

4

TASK'S MEMORY IN STOS

5

ONE STEP CLOSER
struct mem_zone {
 void* beg;
 void* end;

 /* TODO: Access right */

 struct list_node next;
};

6

MMAP IN STOS
long __syscall sys_mmap(void* addr, size_t len, int prot, int flags,
 int filedes, off_t off)
{
 assert(filedes == -1);

 len = align2_up(len, PAGE_SIZE);

 addr = find_free_mem_range(get_current(), len);

 int ret = add_mem_zone(get_current(), addr, addr + len);
 if (ret < 0)
 return ret;

 return (long)addr;
}

7

FAULT HANDLER IN STOS

8

PREVIOUS STATE
STOS has a rather rudimentary memory management

All memory is RW
Only private mapping
m m a p (2) can only map anonymous memory
f o r k (2) copies all pages from the parent to the
child

9

MEMORY PROTECTION

10

MEMORY PROTECTION
In userland: m p r o t e c t (2) changes the protection for a

m e m _ z o n e in the address space

P R O T _ N O N E
P R O T _ R E A D
P R O T _ W R I T E
P R O T _ E X E C

11

MEMORY PROTECTION HOW-TO
Memory protection in enforced by hardware with �ags in
page table entries (PTE)
Demand paging implies we have to keep protection even
when a page is not loaded
So, a protection �ag is present in s t r u c t m e m _ z o n e
In the p a g e _ f a u l t _ h a n d l e r () , get the reason of the
page fault
Check if the rights in the m e m _ z o n e are violated
If so, then do as if the address was not valid, else, it's on
demand paging

12

FAULT HANDLER WITH MEMORY PROTECTION

13

SHARED MAPPING

14

MMAP(2) FLAGS
m a n 2 m m a p

M A P _ P R I V A T E updates are not visible to other processes
mapping the same �le, and are not carried through to the
underlying �le
M A P _ S H A R E D updates are visible to other processes that
map this �le, and are carried through to the underlying �le

15

SHARED MAPPING (1/3)

16

SHARED MAPPING (2/3)

17

SHARED MAPPING (3/3)

18

LET'S MAP PRIVATE MEMORY
mmap(NULL, 4096, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);
fork();

Find free space in the address space
Add a new m e m _ z o n e marked as private
During the fork, clone every pages marked as present in
private mappings for the new task

19

LET'S MAP SHARED MEMORY
mmap(NULL, 4096, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
fork();

Find free space in the address space
Add a new m e m _ z o n e marked as shared
During the fork, copy every page table entries in shared
mappings for the new task
When demand paging occurs, propagate the newly mapped
page in other tasks' memory

20

HOW TO DO THIS ?
We need a way to �nd m e m _ z o n e from the same mapping
When we need to do demand paging, add the new page to
all the shared memory zones

21

FILE MAPPING

22

FILE MAPPING IN USERLAND
int fd = open("my_file", O_RDONLY);
char* file_ptr = mmap(NULL, 4096, PROT_READ, MAP_PRIVATE, fd, 0);
/* Access to the file's content through 'file_ptr' */

23

LET'S USE THE PAGE FAULT HANDLER TO READ
THE FILE

24

OH WAIT...

25

NOT ALL FILES ARE CREATED EQUAL
Some �les that have a custom behaviour when they are

mmapped like:

Unseekable �les (like pipes)
Many �les in / d e v / * shouldn't be
mmappable
But some are (e.g. / d e v / z e r o)

26

AND IN KERNEL ? (1/3)
Create a new m e m _ z o n e for the mapping
In the m e m _ z o n e , store we store the �le and the offset
Use the �le's m m a p �le operation on the m e m _ z o n e .
The m m a p �le operation �lls m e m _ o p e r a t i o n s of the
m e m _ z o n e
We let the task continue

27

AND IN KERNEL ? (2/3)
If the task tries to access an unloaded page, we go in
p a g e _ f a u l t _ h a n d l e r
In p a g e _ f a u l t _ h a n d l e r , we retrieve the m e m _ z o n e of
the fault
Call the l o a d memory operation of the m e m _ z o n e
In the l o a d memory operation, we �ll the page with the
data

28

AND IN KERNEL ? (3/3)
When the task munmap the mapping, we call the r e l e a s e
memory operation
On standard �les, the r e l e a s e memory operation writes
dirty pages back to the �le

29

COPY ON WRITE

30

MAN TO THE RESCUE (1/2)
m a n 2 m m a p

MAP_PRIVATE: Create a private copy-on-write
mapping.

31

MAN TO THE RESCUE (2/2)
m a n 2 f o r k

fork() is implemented using copy-on-
write

32

COPY ON WUT?
After a call to f o r k (2) , a new task is created, identical to
its parent, appart from the return value of fork
We don't want to copy every pages from the parent to the
new task
Copy on write lets us copy the data at the last moment

33

COW (1/3)

34

COW (2/3)

35

COW (3/3)

36

MAKE FORK(2) GREAT AGAIN!
When forking:

Mark every PTE in M A P _ P R I V A T E mappings as read only
Copy the content of the PTE from the parent to the child
page table
They now point to the same physical page

37

COPY ON WRITE
When writing:

A page fault happens
In the fault handler, we can see when we try to write in a
read only page, but in a read/write m e m _ z o n e
In the fault handler:

allocate a new frame
copy the content of the read only frame in the new frame
set the PTE to be read/write and point it to the new
frame

38

FAULT

39

NEXT ?

40

QUESTIONS ?

