
1

ANALYSING THE
BITSTREAM OF

ALTERA'S MAX-V CPLDS
Jean-Francois Nguyen

July 14, 2016

2

SUMMARY
1. CPLDs and their design flow
2. MAX V internals overview
3. Analysis of the bitstream

3

CPLD ?
Complex Programmable Logic Device
Used to build reconfigurable digital circuits
Less complex than a FPGA
Configuration is stored on on-chip flash memory

4

DESIGN FLOW FOR CPLDS

5

DESIGN FLOW FOR ALTERA CPLDS

6

DESIGN FLOW FOR ALTERA CPLDS

7

THE QUARTUS DESIGN FLOW
Actually, it does have command line tools...

8

THE ALTERA MAX V

9

MAX V OVERVIEW
MAXV 5M570Z
~ 570 LEs
159 user I/O pins

10

MAX V HIGH LEVEL OVERVIEW

11

MAX V INTERNALS: LAB STRUCTURE

12

MAX V INTERNALS: LE STRUCTURE

13

TO SUM UP
The device is composed of a matrix of LABs
LABs are interconnected by the MultiTrack Interconnect
A LAB is composed of 10 LEs, a carry chain and a local
interconnect
Locality is taken into account during place & route

14

MAX V BITSTREAM ANALYSIS

15

GOALS
What bits do we need to set to configure a given cell ?
What bits do we need to set to route two given cells
together ?

16

THE PROGRAMMER OBJECT FILE
Contains the bitstream
Result of quartus_asm
Information is grouped into packets
Each packet is composed of a header followed by data
struct packet_hdr {
 uint16_t tag;
 uint32_t length;
}__attribute__((packed));

17

THE PROGRAMMER OBJECT FILE

18

WHAT NOW ?
1. Write a small piece of verilog
2. Generate a bitstream
3. Incrementally modify it
4. Observe changes in the bitstream
5. ???
6. What could go wrong ?

19

THE PLACE AND ROUTE STAGE
Placement:

Decide where to place each electronic component
Routing:

Wire them together

20

P&R IS NON-DETERMINISTIC
Uses simulated annealing:

Move nodes randomly
High temperature: allow bad moves
Lower temperature: less bad moves are allowed
Slowly cool down temperature

21

HOW TO DEAL WITH IT
1. Generate a bunch of different bitstreams
2. Know which resources are used by each of them
3. Cross-correlate the bits used for a given resource

22

THE ROUTING CONSTRAINTS FILE
aka. our not-so-secret weapon

quartus_cdb --back_annotate=routing <my_project>

Contains information about pin, cell and routing
assignments
Back-annotated a�er P&R

23

A TRIVIAL DESIGN
module demo(input A, B, C, D, output X, Y, Z);
 assign X = |{A, B, C, D};
 assign Y = &{A, B, C, D};
 assign Z = ̂{A, B, C, D};
endmodule

24

GIVES US THIS NETLIST

25

AND THEN THIS RCF
section global_data {
 rcf_written_by = "Quartus Prime 15.1 Build 193";
 device = 5M570ZF256C5;
}
signal_name = A { #IOC_X0_Y4_N0
 IO_DATAIN:X0Y4S0I0;
 label = Label_LOCAL_INTERCONNECT:X1Y4S0I23, LOCAL_INTERCONNECT:X1Y4S0I23;
 dest = (WideOr0~0, DATAA), route_port = DATAB; #LC_X1_Y4_N3

 branch_point = Label_LOCAL_INTERCONNECT:X1Y4S0I23;
 dest = (WideAnd0~0, DATAA), route_port = DATAB; #LC_X1_Y4_N7

 branch_point = Label_LOCAL_INTERCONNECT:X1Y4S0I23;
 dest = (WideXor0~0, DATAA), route_port = DATAB; #LC_X1_Y4_N4
}
...

26

PARSING THE RCF
Using pyrser to do the job

[{'device': '5M570ZF256C5',
 'dst': [],
 'name': 'global',
 'rcf_written_by': '"Quartus Prime 15.1 Build 193"'},
 {'IO_DATAIN': routing_coord(x=0, y=4, s=0, i=0),
 'branch_point': 'Label_LOCAL_INTERCONNECT',
 'dst': [{'block_name': 'WideOr0~0',
 'coord': back_annot(type='LC', x=1, y=4, n=3),
 'label': 'Label_LOCAL_INTERCONNECT:X1Y4S0I23, '
 'LOCAL_INTERCONNECT:X1Y4S0I23',
 'port': 'DATAA',
 'route': 'DATAB'},
 {'block_name': 'WideAnd0~0',
 'branch_point': 'Label_LOCAL_INTERCONNECT:X1Y4S0I23',
 'coord': back_annot(type='LC', x=1, y=4, n=7),
 'port': 'DATAA',
 'route': 'DATAB'},
 {'block_name': 'WideXor0~0',
 'branch_point': 'Label_LOCAL_INTERCONNECT:X1Y4S0I23',
 'coord': back_annot(type='LC', x=1, y=4, n=4),
 'port': 'DATAA',
 'route': 'DATAB'}],
 'label': 'Label_LOCAL_INTERCONNECT',
 'name': 'A',
 'src': back_annot(type='IOC', x=0, y=4, n=0)},
...
]

27

FUZZING AT THE VERILOG LEVEL
Generate random designs using the maximum number of
user pins
Reuse some icefuzz scripts
module top(input p0, input p1, input p2, input p3, input p4, input p5, input p6, input p7, input p8, input p9, output p10,
 localparam [15:0] p10_lut0 = 16'd 19820;
 wire p10_in0 = p10_lut0 >> {p16, p17, p14, p16};
 localparam [15:0] p10_lut1 = 16'd 9542;
 wire p10_in1 = p10_lut1 >> {p9, p2, p2, p8};
 localparam [15:0] p10_lut2 = 16'd 23726;
 wire p10_in2 = p10_lut2 >> {p17, p17, p12, p18};
 localparam [15:0] p10_lut3 = 16'd 43527;
 wire p10_in3 = p10_lut3 >> {p14, p17, p18, p15};
 localparam [15:0] p10_lut4 = 16'd 38962;
 wire p10_in4 = p10_lut4 >> {p6, p9, p12, p12};
 localparam [15:0] p10_lut5 = 16'd 60603;
 wire p10_in5 = p10_lut5 >> {p3, p2, p4, p2};
 localparam [15:0] p10_lut6 = 16'd 30058;
 wire p10_in6 = p10_lut6 >> {p2, p4, p3, p9};
 localparam [15:0] p10_lut7 = 16'd 11382;
 wire p10_in7 = p10_lut7 >> {p17, p17, p18, p14};
 assign p10 = ̂{p10_in1, p10_in5, p10_in7, p5, p7, p8, ~p10_in0, ~p10_in2, ~p10_in3, ~p10_in4, ~p10_in6, ~p11, ~p9};
 localparam [15:0] p13_lut0 = 16'd 28835;
 wire p13_in0 = p13_lut0 >> {p14, p11, p12, p11};
 localparam [15:0] p13_lut1 = 16'd 43306;
 wire p13_in1 = p13_lut1 >> {p12, p12, p15, p9};
...

28

ASSUMPTIONS
The default value for the cell configuration bits is 1

work with the bitwise inverse of the bitstream
The enabled routes of a cell define its configuration bits

29

POPULATING THE DATABASE
Associate the sample bitstream to its RCF
For each signal defined inside the RCF:

Add source cell to the database if not found
For each of its destinations:

Add dest cell to the database if not found
Add route to database associated to this sample

30

ANALYZING INTER-CELL CONFIGURATION
For a given route R:

A := all bitstreams who use R
B := ~A
I := intersection of each element in A

"the bits who are set in all bitstreams that use R"

31

ANALYZING INTER-CELL CONFIGURATION: A
BETTER WAY

For a given route R:
A := all bitstreams who use R; B := ~A
I := intersection of each element in A

"the bits who are set in all bitstreams that use R"
J := union of the complements of each element of B

"the bits who are not set in at least one of the
bitstreams that doesn't use R"

Configuration bits for R are the intersection of I and J
"the bits who are set in all bitstreams that use R and
are not used in at least one bitstream that doesn't
use R"

32

CONCLUSION
We overcomed the pain caused by the P&R by using the
RCF file
We are able to isolate the bits used by a route in the
bitstream
Not quite reliable. We probably need more bitstreams

33

NEXT STEPS
Correlate the specific interconnects used
Retrieve the content of a LUT
RAM cells
Probably more

34

RESSOURCES
Altera documentation:

From the bitstream to the netlist:

Icestorm project:

https://www.altera.com/en_US/pdfs/literature/hb/max-
v/max5_handbook.pdf

http://www.fabienm.eu/flf/wp-
content/uploads/2014/11/Note2008.pdf

http://www.clifford.at/icestorm/

QUESTIONS?

https://www.altera.com/en_US/pdfs/literature/hb/max-v/max5_handbook.pdf
http://www.fabienm.eu/flf/wp-content/uploads/2014/11/Note2008.pdf
http://www.clifford.at/icestorm/

QUESTIONS?

35

