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MODULE EXCAVATION ?
Use concolic analysis to explore kernel modules and get

informations about their IOCTLs
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WHAT IS AN IOCTL ?
long random_ioctl(int fd, unsigned int cmd, unsigned long arg); 

A syscall to get custom operations on a resource
Device specific commands, code or specs needed
Unavailable for private drivers



4

BUT, WHY ?
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CHECK IF HEADERS AND IOCTLS MATCH
// linux/include/uapi/linux/firewire-cdev.h 

#define FW_CDEV_IOC_GET_INFO           _IOWR('#', 0x00, struct fw_cdev_get_info) 
#define FW_CDEV_IOC_SEND_REQUEST        _IOW('#', 0x01, struct fw_cdev_send_request) 
#define FW_CDEV_IOC_ALLOCATE           _IOWR('#', 0x02, struct fw_cdev_allocate) 
#define FW_CDEV_IOC_DEALLOCATE          _IOW('#', 0x03, struct fw_cdev_deallocate) 
#define FW_CDEV_IOC_SEND_RESPONSE       _IOW('#', 0x04, struct fw_cdev_send_response) 
#define FW_CDEV_IOC_INITIATE_BUS_RESET  _IOW('#', 0x05, struct fw_cdev_initiate_bus_reset) 
#define FW_CDEV_IOC_ADD_DESCRIPTOR     _IOWR('#', 0x06, struct fw_cdev_add_descriptor) 
#define FW_CDEV_IOC_REMOVE_DESCRIPTOR   _IOW('#', 0x07, struct fw_cdev_remove_descriptor) 
#define FW_CDEV_IOC_CREATE_ISO_CONTEXT _IOWR('#', 0x08, struct fw_cdev_create_iso_context) 
#define FW_CDEV_IOC_QUEUE_ISO          _IOWR('#', 0x09, struct fw_cdev_queue_iso) 
#define FW_CDEV_IOC_START_ISO           _IOW('#', 0x0a, struct fw_cdev_start_iso) 
#define FW_CDEV_IOC_STOP_ISO            _IOW('#', 0x0b, struct fw_cdev_stop_iso) 



6

IOCTL COMMANDS CONTAIN DATA
// linux/include/uapi/linux/firewire-cdev.h 
#define FW_CDEV_IOC_GET_INFO           _IOWR('#', 0x00, struct fw_cdev_get_info) 

// linux/include/uapi/asm-generic/ioctl.h 
#define _IOC(dir,type,nr,size) \ 
        (((dir)  << _IOC_DIRSHIFT) | \ 
         ((type) << _IOC_TYPESHIFT) | \ 
         ((nr)   << _IOC_NRSHIFT) | \ 
         ((size) << _IOC_SIZESHIFT)) 

#ifndef __KERNEL__ 
#define _IOC_TYPECHECK(t) (sizeof(t)) 
#endif

/* used to create numbers */ 
#define _IO(type,nr)            _IOC(_IOC_NONE,(type),(nr),0) 
#define _IOR(type,nr,size)      _IOC(_IOC_READ,(type),(nr),(_IOC_TYPECHECK(size))) 
#define _IOW(type,nr,size)      _IOC(_IOC_WRITE,(type),(nr),(_IOC_TYPECHECK(size))) 
#define _IOWR(type,nr,size)     _IOC(_IOC_READ|_IOC_WRITE,(type),(nr),(_IOC_TYPECHECK(size))) 
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STILL DOESN'T TELL US WHY...

To find bugs
To find vulnerabilities (Yay)
To discover IOCTLs from private drivers
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AND, AS A BONUS

Experience and challenge this kind of analysis in a new
context

A.K.A not in a userland CTF exercise
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THE PEELER: STEPS
Find the functions accurately
Find which commands are valid
Find a way to determine the type of 'arg'
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ANGR

 

Framework developped by the UC Santa Barbara's
Computer Security Lab, and their associated CTF team,

Shellphish.
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WHAT IS IT ?

angr is a framework for analyzing binaries. It focuses on both static and
dynamic symbolic ("concolic") analysis, making it applicable to a

variety of tasks.

Participated in the DARPA CGC (Autonomous Hacking) - One
of the 7 team qualified for the finals

Submodules: CLE, claripy, simuvex...
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CONCOLIC ?
Concrete execution + Symbolic execution

Concrete execution: Program being executed
Symbolic execution allows at a time T to determine for a
branch all conditions necessary to take the branch or not
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EXAMPLE
int example(int x, int y) 
{ 
    int x = i1; 
    int y = i2; 

    if (x > 80) { 
        if (x == 256) 
            return True; 
    } else { 
        x = 0; 
        y = 0; 
    }
    return False; 
} 
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GIVES US
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PRACTICAL EXAMPLE
Defcon Quals 2016 - babyre
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Solved in 5 minutes with angr:
main           = 0x4025e7 

p = angr.Project('baby-re') 
init = p.factory.blank_state(addr=main) 

# Taken from IDA's xrefs 
scanf_off = [0x4d, 0x85, 0xbd, 0xf5, 0x12d, 0x165, 0x19d, 0x1d5, 
             0x20d, 0x245, 0x27d, 0x2b5, 0x2ed] 

def scanf(state):
    state.mem[state.regs.rsi:] = state.se.BVS('c', 8) 

for o in scanf_off: 
        p.hook(main + o, func=scanf, length=5) 

pgp = p.factory.path_group(init, threads=8) 

win            = 0x4028e9 
fail           = 0x402941 
ex = pgp.explore(find=(win), avoid=(fail)) 

s = ex.found[0].state 

flag_addr      = 0x7fffffffffeff98 # First rsi from scanf 
flag = s.se.any_str(s.memory.load(flag_addr, 50)) 
print("The flag is '{0}'".format(flag)) 
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SO ?
It seems to do everything we ask for
Good results in CTF
Most of the work has been put in the ELF handling
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BUT
(YES, THERE IS A BUT...)

(AGAIN...)
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Apparently it doesn't like kernel modules,
you need to write a custom loader

-- Gaby
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PROBLEMS
Object files (modules) are different from executables
Relocations had to be done
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RELOCATIONS
References to symbols in other sections
Need to be resolved at link time
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EXAMPLE
;; x.o 

.text: 
    f: 
        call external_func      ;; Relocation to external func 
        lea eax, inter_section, ;; Inter section relocation 
        ret 

.data: 
    inter_section: 
        .long 12 

;; y.o 

.text: 
    main: 
        call f                   ;; Inter object relocation 
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LET'S EXPLORE
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Peeler behavior overview:
ioctls = find_ioctls("peel_me_sensually.bin"); 
for (ioctl in ioctls) 
{ 
    endpoints = find_endpoints(ioctl); 
    ex = explorer(); 
    for (endpoint in endpoints) 
    {
        paths = get_paths(ex, ioctl.entry, endpoint); 
        for (path in paths) 
        { 
            if (get_ret_val(path) > -1) 
                do_stuff(path); 
        } 
    }
} 
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int my_false_ioctl(int fd, unsigned long cmd, void* arg) { 

    int ret = -1; 

    switch (cmd) { 
        case 0xcafe: 
            ret = 1 * 2 + 98 - 3000; 

            if (ret + fd - 23 + cmd == 0xa110c) 
                ret = 1; 
    }
    return ret; 
} 

gives us
Path from 0x4005dc to 4006a7
  Required conditions (constraints): 
    <Bool reg_40_5_64 == 0xcafe> 
    <Bool (reg_40_5_64 + SignExt(32, ((reg_48_4_64 + 0xfffff4ac) - 0x17))) == 0xa110c> 
  Simplified: <Bool (reg_40_5_64 == 0xcafe)  \ 
                 && (reg_48_4_64 == 0x95179) \ 
                 && ((0xfffff495 + reg_48_4_64[31:0])[31:31] == 0))> 
  return value: 0x1
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MINOR FIXES
The intra-block address patch
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HEY, IT WOR-- ... WAIT A MINUTE.

 
(drm.ko)
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DRM_MODE_ATOMIC_IOCTL
p1kachu@GreenLabOfGazon:src$ ./pyfinder.py drm.ko -f drm_mode_atomic_ioctl -q 
[ ]   INFOS   Peeling drm's ioctls 

[ ]   INFOS   Analyzing function drm_mode_atomic_ioctl at 0x421b30 
[ ]   INFOS   Launching path_group explorer 
[ ]   INFOS   Explorer: <PathGroup with 1 deadended, 1 found> 

[ ]   INFOS   Analyzing 1 found paths 
[ ]   INFOS   Path from 0x421b30 to 0x421f12L (1/1) 
[ ]   INFOS   Return value would be 0xffffffeaL - Skipping 

[ ]   INFOS   Analyzing 1 deadended paths 
[ ]   INFOS   Path from 0x421b30 to 0x421ba7L (1/1) 
[-]    FAIL   Something went wrong in se.min/max: Unsat Error 
[ ]   INFOS   End of analysis 
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DRM_COMPAT_IOCTL
p1kachu@GreenLabOfGazon:src$ ./pyfinder.py drm.ko -f drm_compat_ioctl -q 
[ ]   INFOS   Peeling drm's ioctls 

[ ]   INFOS   Analyzing function drm_compat_ioctl at 0x422490 
[ ]   INFOS   Launching path_group explorer 
[ ]   INFOS   Explorer: <PathGroup with 5 deadended, 2 active, 1 found> 

[ ]   INFOS   Analyzing 1 found paths 
[ ]   INFOS   Path from 0x422490 to 0x4224bdL (1/1) 
[ ]   INFOS   Return value would be 0xffffffffffffffedL - Skipping 

[ ]   INFOS   Analyzing 5 deadended paths 
[ ]   INFOS   Path from 0x422490 to 0x405b44L (1/5) 
[-]    FAIL   Something went wrong in se.min/max: Unsat Error 
[ ]   INFOS   Path from 0x422490 to 0x4059f5L (2/5) 
[-]    FAIL   Something went wrong in se.min/max: Unsat Error 
[ ]   INFOS   Path from 0x422490 to 0x423e4eL (3/5) 
[ ]   INFOS   Return value would be 0xfffffff2L - Skipping 
[ ]   INFOS   Path from 0x422490 to 0x405b44L (4/5) 
[-]    FAIL   Something went wrong in se.min/max: Unsat Error 
[ ]   INFOS   Path from 0x422490 to 0x4059f5L (5/5) 
[-]    FAIL   Something went wrong in se.min/max: Unsat Error 
[ ]   INFOS   Explorer: <PathGroup with 2 deadended> 
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__KSTRTAB_DRM_IOCTL_PERMIT
[ ]   INFOS   Analyzing function __kstrtab_drm_ioctl_permit at 0x4399ce 
Traceback (most recent call last): 
  File "./pyfinder.py", line 201, in <module> 
      recover_function(f, cfg, addr) 
  File "/home/p1kachu/peeling-ioctls/src/excavator.py", line 195, in recover_function 
      ins = blk.capstone.insns[last_ins] 
IndexError: list index out of range 
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WHAT NOW ?
We need to enhance and strengthen the peeler
angr cannot work without some human pre-work
How to save resources (time and memory) ?

Automate verifications
Discard useless stuff
Analyze interesting functions only



32

FIND IOCTLS SMARTLY
HOW DO WE DO THAT ?
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IOCTL REGISTRATION PROCESSUS
Create a struct file_operations

Multiple function pointers
Used to register operations on the device

Load the structure in memory (using a register function)
Classic operations will now be handled by these functions
static const struct file_operations i8k_fops = { 
        .owner          = THIS_MODULE, 
        .open           = i8k_open_fs, 
        .read           = seq_read, 
        .llseek         = seq_lseek, 
        .release        = single_release, 
        .unlocked_ioctl = i8k_ioctl, 
}; 
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LEGEND
For the next slides, please refer to this legend: 
- fops           : file_operations struct containing our ioctl 
- register_ioctl : register function that will load fops 
- call_me_addr   : address of 'call register_ioctl' 
- Caller         : function containing call_me_addr 
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GOAL: FIND FOPS
static struct file_operations fops = { 
    .owner = THIS_MODULE, 
    .unlocked_ioctl = (void*)my_ioctl, 
    .compat_ioctl = (void*)my_ioctl 
}; 

Data of interest: Its address in memory.
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LOOK FOR REGISTER_IOCTL
Iterate over imported symbols to look for one of these:
register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 

register_functions = [ 
                      '__register_chrdev', 
                      'misc_register', 
                      'cdev_init' 
] 

Data of interest: Exact address of 'call register_ioctl'
(call_me_addr).
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FIND WHICH FUNCTION CALLS
REGISTER_IOCTL (CALLER)

""" 
- The 'call register_ioctl' will always be in the init function. 
- The init function will always be called init_module. 
""" 

""" 
- The 'call register_ioctl' will always be in the init function. 
- The init function will always be called init_module. 

EDIT : No, and no. 
""" 

for _, sym in elf.symbols_by_addr.iteritems(): 
    bottom = sym.rebased_addr 
    top    = sym.rebased_addr + sym.size 
    if register_ioctl > bottom and register_ioctl <= top: 
        Caller = sym.name 

Data of interest: Entry point of Caller.
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AND NOW ?
We: 
* have Caller's entry point 
* have register_ioctl's call address (call_me_addr, in Caller) 
* know that when register_ioctl is called, fops is in a register 

So we: 
* Launch a path explorer from Caller's entry point to call_me_addr 
* Break just before the call 
* Analyze the passed arguments to get fops address 
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PROBLEMS
Very long Callers
Lots of unresolved functions
Memory and time consuming
Calling 'conventions'
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LET'S TRY TO BE CLEVER
Assignations and call usually are in the same block
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Create a CFG of Caller
Find the basic block containing call_me_addr
Path explorer from the beginning of the block only
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Right.

It doesn't work.
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TROUBLES WITH INCOMPLETE CFG
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Problems with relative calls, unresolved symbols, symbolic
memory...
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ANOTHER WAY: DWARF DEBUG
INFOS

If present, DWARF infos can not fail

Iterate over them, find fops in memory, and get the IOCTLs
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BEST EFFORT STRATEGY
1. look in debug infos (DWARF) 
    * Accurate and fast 
    * Need to have access to the source code 

2. Fallback on the file_operations structure 
    * Slow 
    * Requires an angr explorer and CFG for itself 
    * Often fails at some point 

3. Fallback on symbols names 
    * Some IOCTLs aren't named like that 
    * More functions to analyze 
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WHAT'S LEFT TO DO ?

* Get infos about the *arg* parameter 
    * What's its type ? 
    * Which operations are applied on it ? 
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POSSIBLE IMPROVEMENT
Efficiency boost (merge paths, discard others, ...)
Allow user input for testing
Sanity checking by parsing headers
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SUM UP
Not usable for big/complicated modules
Would need more layers of fallbacks
Everything is too unstable to be used at once

However, still interesting to see angr on real life problems
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More details:

 (UCSB)
 (Jonathan Salwan)

Linux Device Drivers - Chapter 6
http://github.com/angr
SoK: (State of) The Art of War: Offensive Techniques in
Binary Analysis
Binary analysis - Concolic Execution

https://lwn.net/Kernel/LDD3/
http://github.com/angr
https://www.cs.ucsb.edu/~vigna/publications/2016_SP_angrSoK.pdf
http://shell-storm.org/blog/Binary-analysis-Concolic-execution-with-Pin-and-z3/
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Thank you

 - p1kachu@lse.epita.fr @0xP1kachu

mailto:p1kachu@lse.epita.fr
http://twitter.com/0xP1kachu

