
1

ANGRY MODULE
EXCAVATION

LET'S PLAY WITH DUCT TAPE.

Stanislas 'P1kachu' Lejay
LSE Week - July 14, 2016

2

MODULE EXCAVATION ?
Use concolic analysis to explore kernel modules and get

informations about their IOCTLs

3

WHAT IS AN IOCTL ?
long random_ioctl(int fd, unsigned int cmd, unsigned long arg);

A syscall to get custom operations on a resource
Device specific commands, code or specs needed
Unavailable for private drivers

4

BUT, WHY ?

5

CHECK IF HEADERS AND IOCTLS MATCH
// linux/include/uapi/linux/firewire-cdev.h

#define FW_CDEV_IOC_GET_INFO _IOWR('#', 0x00, struct fw_cdev_get_info)
#define FW_CDEV_IOC_SEND_REQUEST _IOW('#', 0x01, struct fw_cdev_send_request)
#define FW_CDEV_IOC_ALLOCATE _IOWR('#', 0x02, struct fw_cdev_allocate)
#define FW_CDEV_IOC_DEALLOCATE _IOW('#', 0x03, struct fw_cdev_deallocate)
#define FW_CDEV_IOC_SEND_RESPONSE _IOW('#', 0x04, struct fw_cdev_send_response)
#define FW_CDEV_IOC_INITIATE_BUS_RESET _IOW('#', 0x05, struct fw_cdev_initiate_bus_reset)
#define FW_CDEV_IOC_ADD_DESCRIPTOR _IOWR('#', 0x06, struct fw_cdev_add_descriptor)
#define FW_CDEV_IOC_REMOVE_DESCRIPTOR _IOW('#', 0x07, struct fw_cdev_remove_descriptor)
#define FW_CDEV_IOC_CREATE_ISO_CONTEXT _IOWR('#', 0x08, struct fw_cdev_create_iso_context)
#define FW_CDEV_IOC_QUEUE_ISO _IOWR('#', 0x09, struct fw_cdev_queue_iso)
#define FW_CDEV_IOC_START_ISO _IOW('#', 0x0a, struct fw_cdev_start_iso)
#define FW_CDEV_IOC_STOP_ISO _IOW('#', 0x0b, struct fw_cdev_stop_iso)

6

IOCTL COMMANDS CONTAIN DATA
// linux/include/uapi/linux/firewire-cdev.h
#define FW_CDEV_IOC_GET_INFO _IOWR('#', 0x00, struct fw_cdev_get_info)

// linux/include/uapi/asm-generic/ioctl.h
#define _IOC(dir,type,nr,size) \
 (((dir) << _IOC_DIRSHIFT) | \
 ((type) << _IOC_TYPESHIFT) | \
 ((nr) << _IOC_NRSHIFT) | \
 ((size) << _IOC_SIZESHIFT))

#ifndef __KERNEL__
#define _IOC_TYPECHECK(t) (sizeof(t))
#endif

/* used to create numbers */
#define _IO(type,nr) _IOC(_IOC_NONE,(type),(nr),0)
#define _IOR(type,nr,size) _IOC(_IOC_READ,(type),(nr),(_IOC_TYPECHECK(size)))
#define _IOW(type,nr,size) _IOC(_IOC_WRITE,(type),(nr),(_IOC_TYPECHECK(size)))
#define _IOWR(type,nr,size) _IOC(_IOC_READ|_IOC_WRITE,(type),(nr),(_IOC_TYPECHECK(size)))

7

STILL DOESN'T TELL US WHY...

To find bugs
To find vulnerabilities (Yay)
To discover IOCTLs from private drivers

8

AND, AS A BONUS

Experience and challenge this kind of analysis in a new
context

A.K.A not in a userland CTF exercise

9

THE PEELER: STEPS
Find the functions accurately
Find which commands are valid
Find a way to determine the type of 'arg'

10

ANGR

Framework developped by the UC Santa Barbara's
Computer Security Lab, and their associated CTF team,

Shellphish.

11

WHAT IS IT ?

angr is a framework for analyzing binaries. It focuses on both static and
dynamic symbolic ("concolic") analysis, making it applicable to a

variety of tasks.

Participated in the DARPA CGC (Autonomous Hacking) - One
of the 7 team qualified for the finals

Submodules: CLE, claripy, simuvex...

12

CONCOLIC ?
Concrete execution + Symbolic execution

Concrete execution: Program being executed
Symbolic execution allows at a time T to determine for a
branch all conditions necessary to take the branch or not

13

EXAMPLE
int example(int x, int y)
{
 int x = i1;
 int y = i2;

 if (x > 80) {
 if (x == 256)
 return True;
 } else {
 x = 0;
 y = 0;
 }
 return False;
}

14

GIVES US

15

PRACTICAL EXAMPLE
Defcon Quals 2016 - babyre

16

Solved in 5 minutes with angr:
main = 0x4025e7

p = angr.Project('baby-re')
init = p.factory.blank_state(addr=main)

Taken from IDA's xrefs
scanf_off = [0x4d, 0x85, 0xbd, 0xf5, 0x12d, 0x165, 0x19d, 0x1d5,
 0x20d, 0x245, 0x27d, 0x2b5, 0x2ed]

def scanf(state):
 state.mem[state.regs.rsi:] = state.se.BVS('c', 8)

for o in scanf_off:
 p.hook(main + o, func=scanf, length=5)

pgp = p.factory.path_group(init, threads=8)

win = 0x4028e9
fail = 0x402941
ex = pgp.explore(find=(win), avoid=(fail))

s = ex.found[0].state

flag_addr = 0x7fffffffffeff98 # First rsi from scanf
flag = s.se.any_str(s.memory.load(flag_addr, 50))
print("The flag is '{0}'".format(flag))

16

17

SO ?
It seems to do everything we ask for
Good results in CTF
Most of the work has been put in the ELF handling

18

BUT
(YES, THERE IS A BUT...)

(AGAIN...)

19

Apparently it doesn't like kernel modules,
you need to write a custom loader

-- Gaby

19

20

PROBLEMS
Object files (modules) are different from executables
Relocations had to be done

21

RELOCATIONS
References to symbols in other sections
Need to be resolved at link time

22

EXAMPLE
;; x.o

.text:
 f:
 call external_func ;; Relocation to external func
 lea eax, inter_section, ;; Inter section relocation
 ret

.data:
 inter_section:
 .long 12

;; y.o

.text:
 main:
 call f ;; Inter object relocation

23

LET'S EXPLORE

24

Peeler behavior overview:
ioctls = find_ioctls("peel_me_sensually.bin");
for (ioctl in ioctls)
{
 endpoints = find_endpoints(ioctl);
 ex = explorer();
 for (endpoint in endpoints)
 {
 paths = get_paths(ex, ioctl.entry, endpoint);
 for (path in paths)
 {
 if (get_ret_val(path) > -1)
 do_stuff(path);
 }
 }
}

24

25

int my_false_ioctl(int fd, unsigned long cmd, void* arg) {

 int ret = -1;

 switch (cmd) {
 case 0xcafe:
 ret = 1 * 2 + 98 - 3000;

 if (ret + fd - 23 + cmd == 0xa110c)
 ret = 1;
 }
 return ret;
}

gives us
Path from 0x4005dc to 4006a7
 Required conditions (constraints):
 <Bool reg_40_5_64 == 0xcafe>
 <Bool (reg_40_5_64 + SignExt(32, ((reg_48_4_64 + 0xfffff4ac) - 0x17))) == 0xa110c>
 Simplified: <Bool (reg_40_5_64 == 0xcafe) \
 && (reg_48_4_64 == 0x95179) \
 && ((0xfffff495 + reg_48_4_64[31:0])[31:31] == 0))>
 return value: 0x1

25

26

MINOR FIXES
The intra-block address patch

27

HEY, IT WOR-- ... WAIT A MINUTE.

(drm.ko)

28

DRM_MODE_ATOMIC_IOCTL
p1kachu@GreenLabOfGazon:src$./pyfinder.py drm.ko -f drm_mode_atomic_ioctl -q
[] INFOS Peeling drm's ioctls

[] INFOS Analyzing function drm_mode_atomic_ioctl at 0x421b30
[] INFOS Launching path_group explorer
[] INFOS Explorer: <PathGroup with 1 deadended, 1 found>

[] INFOS Analyzing 1 found paths
[] INFOS Path from 0x421b30 to 0x421f12L (1/1)
[] INFOS Return value would be 0xffffffeaL - Skipping

[] INFOS Analyzing 1 deadended paths
[] INFOS Path from 0x421b30 to 0x421ba7L (1/1)
[-] FAIL Something went wrong in se.min/max: Unsat Error
[] INFOS End of analysis

29

DRM_COMPAT_IOCTL
p1kachu@GreenLabOfGazon:src$./pyfinder.py drm.ko -f drm_compat_ioctl -q
[] INFOS Peeling drm's ioctls

[] INFOS Analyzing function drm_compat_ioctl at 0x422490
[] INFOS Launching path_group explorer
[] INFOS Explorer: <PathGroup with 5 deadended, 2 active, 1 found>

[] INFOS Analyzing 1 found paths
[] INFOS Path from 0x422490 to 0x4224bdL (1/1)
[] INFOS Return value would be 0xffffffffffffffedL - Skipping

[] INFOS Analyzing 5 deadended paths
[] INFOS Path from 0x422490 to 0x405b44L (1/5)
[-] FAIL Something went wrong in se.min/max: Unsat Error
[] INFOS Path from 0x422490 to 0x4059f5L (2/5)
[-] FAIL Something went wrong in se.min/max: Unsat Error
[] INFOS Path from 0x422490 to 0x423e4eL (3/5)
[] INFOS Return value would be 0xfffffff2L - Skipping
[] INFOS Path from 0x422490 to 0x405b44L (4/5)
[-] FAIL Something went wrong in se.min/max: Unsat Error
[] INFOS Path from 0x422490 to 0x4059f5L (5/5)
[-] FAIL Something went wrong in se.min/max: Unsat Error
[] INFOS Explorer: <PathGroup with 2 deadended>

30

__KSTRTAB_DRM_IOCTL_PERMIT
[] INFOS Analyzing function __kstrtab_drm_ioctl_permit at 0x4399ce
Traceback (most recent call last):
 File "./pyfinder.py", line 201, in <module>
 recover_function(f, cfg, addr)
 File "/home/p1kachu/peeling-ioctls/src/excavator.py", line 195, in recover_function
 ins = blk.capstone.insns[last_ins]
IndexError: list index out of range

31

WHAT NOW ?
We need to enhance and strengthen the peeler
angr cannot work without some human pre-work
How to save resources (time and memory) ?

Automate verifications
Discard useless stuff
Analyze interesting functions only

32

FIND IOCTLS SMARTLY
HOW DO WE DO THAT ?

33

IOCTL REGISTRATION PROCESSUS
Create a struct file_operations

Multiple function pointers
Used to register operations on the device

Load the structure in memory (using a register function)
Classic operations will now be handled by these functions
static const struct file_operations i8k_fops = {
 .owner = THIS_MODULE,
 .open = i8k_open_fs,
 .read = seq_read,
 .llseek = seq_lseek,
 .release = single_release,
 .unlocked_ioctl = i8k_ioctl,
};

34

LEGEND
For the next slides, please refer to this legend:
- fops : file_operations struct containing our ioctl
- register_ioctl : register function that will load fops
- call_me_addr : address of 'call register_ioctl'
- Caller : function containing call_me_addr

35

GOAL: FIND FOPS
static struct file_operations fops = {
 .owner = THIS_MODULE,
 .unlocked_ioctl = (void*)my_ioctl,
 .compat_ioctl = (void*)my_ioctl
};

Data of interest: Its address in memory.

36

LOOK FOR REGISTER_IOCTL
Iterate over imported symbols to look for one of these:
register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);

register_functions = [
 '__register_chrdev',
 'misc_register',
 'cdev_init'
]

Data of interest: Exact address of 'call register_ioctl'
(call_me_addr).

37

FIND WHICH FUNCTION CALLS
REGISTER_IOCTL (CALLER)

"""
- The 'call register_ioctl' will always be in the init function.
- The init function will always be called init_module.
"""

"""
- The 'call register_ioctl' will always be in the init function.
- The init function will always be called init_module.

EDIT : No, and no.
"""

for _, sym in elf.symbols_by_addr.iteritems():
 bottom = sym.rebased_addr
 top = sym.rebased_addr + sym.size
 if register_ioctl > bottom and register_ioctl <= top:
 Caller = sym.name

Data of interest: Entry point of Caller.

38

AND NOW ?
We:
* have Caller's entry point
* have register_ioctl's call address (call_me_addr, in Caller)
* know that when register_ioctl is called, fops is in a register

So we:
* Launch a path explorer from Caller's entry point to call_me_addr
* Break just before the call
* Analyze the passed arguments to get fops address

39

PROBLEMS
Very long Callers
Lots of unresolved functions
Memory and time consuming
Calling 'conventions'

40

LET'S TRY TO BE CLEVER
Assignations and call usually are in the same block

41

Create a CFG of Caller
Find the basic block containing call_me_addr
Path explorer from the beginning of the block only

42

Right.

It doesn't work.

42

43

TROUBLES WITH INCOMPLETE CFG

44

44

45

Problems with relative calls, unresolved symbols, symbolic
memory...

45

46

ANOTHER WAY: DWARF DEBUG
INFOS

If present, DWARF infos can not fail

Iterate over them, find fops in memory, and get the IOCTLs

47

BEST EFFORT STRATEGY
1. look in debug infos (DWARF)
 * Accurate and fast
 * Need to have access to the source code

2. Fallback on the file_operations structure
 * Slow
 * Requires an angr explorer and CFG for itself
 * Often fails at some point

3. Fallback on symbols names
 * Some IOCTLs aren't named like that
 * More functions to analyze

48

WHAT'S LEFT TO DO ?

* Get infos about the *arg* parameter
 * What's its type ?
 * Which operations are applied on it ?

49

POSSIBLE IMPROVEMENT
Efficiency boost (merge paths, discard others, ...)
Allow user input for testing
Sanity checking by parsing headers

50

SUM UP
Not usable for big/complicated modules
Would need more layers of fallbacks
Everything is too unstable to be used at once

However, still interesting to see angr on real life problems

51

More details:

 (UCSB)
 (Jonathan Salwan)

Linux Device Drivers - Chapter 6
http://github.com/angr
SoK: (State of) The Art of War: Offensive Techniques in
Binary Analysis
Binary analysis - Concolic Execution

https://lwn.net/Kernel/LDD3/
http://github.com/angr
https://www.cs.ucsb.edu/~vigna/publications/2016_SP_angrSoK.pdf
http://shell-storm.org/blog/Binary-analysis-Concolic-execution-with-Pin-and-z3/

52

Thank you

 - p1kachu@lse.epita.fr @0xP1kachu

mailto:p1kachu@lse.epita.fr
http://twitter.com/0xP1kachu

